期刊文献+

超分辨率图像的小特征增强方法研究与仿真 被引量:9

Study on the Method of Super-Resolution Image Little Feature Enhancement and Simulation
下载PDF
导出
摘要 对超分辨率图像的小特征进行增强,可增强图像目标的边缘信息,改善图像的清晰度和分辨率。进行小特征增强时,需要根据图像帧之间的像素差设定图像增强增量,而传统多小波域算法在超高分辨率下无法获取图像帧之间的像素差,不能获取相关的增强增量,导致小特征增强效果差。提出改进小波变换的超分辨率图像小特征增强方法,先融合于Daubechies 8紧支撑正交小波对高分辨率图像的边缘信息进行去噪,利用张量扩散算法组建图像的各项异性张量扩散模型,将图像信息精细划分为光滑区域、边缘、和孤立噪声点,针对不同的分类设定相应的扩散张量的特征值,有效的完成了超分辨率图像的小特征增强。仿真结果证明,可以更有效增强图像的边缘和细节特征。 In the paper,we proposed a small feature enhancement method to improve the super resolution image of wavelet transform. First,we fused the method with Daubechies 8 compact support orthogonal wavelet to denoise high resolution image edge information. Then we used the tensor diffusion algorithm to establish an anisotropic tensor diffusion model,and meticulously divided the image information into smooth area,edge,and isolated noise points.According to different classifications,we set the corresponding diffusion tensor of characteristic values,and effectively completed the small feature enhancement of. super resolution images The simulation results show that the edge and detail features of image can be enhanced more effectively.
作者 王亮
出处 《计算机仿真》 CSCD 北大核心 2016年第8期373-376,共4页 Computer Simulation
基金 基于数字载体预处理的藏文信息秘密共享技术研究(2015ZR-14-20)
关键词 小波变换 超分辨率图像 小特征增强 Wavelet transform Super-resolution image Small features enhanced
  • 相关文献

参考文献10

二级参考文献111

  • 1韩玉兵,吴乐南.基于自适应滤波的视频序列超分辨率重建[J].计算机学报,2006,29(4):642-647. 被引量:14
  • 2禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 3FREEMAN W T, JONES T R, PASZTOR E C. Example based super- resolution [ J 1. IEEE Computer Graphics and Applica- tiuns, 2002, 22(2), 56-65.
  • 4CHANG H, YEUNG D Y, XIONG Y. Super - resolution through neighbor embedding [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington. DC, USA, 2004:275 -282.
  • 5YANG J C, WRIGHT J, HUANG T, et al. Image super-reso- lution via sparse representation [J ]. IEEE Transaction on Image Processing, 2010, 19 ( 11 ) : 2861 - 2873.
  • 6RUi)IN I,, ()SLIER S, FA!I'EMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica I), 1992 (60) :259 -268.
  • 7YANG J, ZHANG Y, YIN W. Algorithm for gorithm for signal rier data [ J ]. IEEE Journal of 2008, 4(2) : 288 -297.
  • 8A Fast TVLI - I2 Minimization reconstruction fivtm partial Fm- Special Topics Signal Process, WANG Y, YANG J, YIN W, et al. A new alternating minimiza- tion algorithm for total variation image reconstruction [ J ]. SIAM Journal on Imaging Sciences, 2008, 1 (3) : 248 -272.
  • 9BUADES A, COLL B, MOREL J M. A non - local algorithm tbr image denoising[ C ]// Proc. IEEE COMSOC Conf. Computer Vis. Pattern Recognit. 2005 : 60 - 65.
  • 10AHARON M, ELAD M,BRUCKSTE1N K S. An algorithm fir de- signing overcomplete dictionaries tbr sparse representatinn [ J 1 - IEEE Trans. On Signal Processing. 2006,54( 11 ) :4311 - 4322.

共引文献37

同被引文献78

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部