期刊文献+

造纸企业工艺过程能源消耗预测仿真 被引量:4

Prediction and Simulation of Energy Consumption in the process of Paper Making Enterprises
下载PDF
导出
摘要 能耗预测是企业能源管理系统中的重要任务之一,如何准确、高效的进行能源消耗预测十分具有挑战性。针对现有造纸企业能耗预测结果精度较低的问题,提出采用贝叶斯估计的马尔科夫蒙特卡洛算法对传统的自回归积分滑动平均模型进行改进。根据能耗数据的特点选取恰当的先验分布,并生成一条满足目标分布的马氏链,利用Gibbs抽样算法提取参数的后验分布均值作为模型参数估计值。实验表明,上述算法在造纸企业能源消耗预测上有较高精度。 One of the important missions in the process of industrial production is the prediction of energy consumption. Energy saving and consumption reduction have attracted more and more attention of enterprises,how to accurately and efficiently predict the energy consumption is very challenging. Aiming at the low prediction accuracy of existing method,we proposed one method which optimizes the traditional ARIMA model using Bayesian estimation and Markov Monte Carlo algorithm. Selecting the appropriate prior distribution of the characteristics of energy consumption data and generating a Markov chain to meet the target distribution,we took use of Gibbs sampling algorithm to extract the mean value of parameters posterior distribution as the model estimation parameters. The algorithm is proved more effective by conducting the comparative experiment. The results show that the algorithm has high accuracy in the prediction of the energy consumption of paper making enterprises.
出处 《计算机仿真》 CSCD 北大核心 2016年第8期438-442,447,共6页 Computer Simulation
关键词 能耗预测 自回归积分滑动平均模型 贝叶斯估计 马尔科夫蒙特卡洛算法 Energy consumption prediction ARIMA Bayesian estimation Markov Monte Carlo algorithm
  • 相关文献

参考文献8

  • 1刘亚东,李继庚,吴波,刘焕彬.造纸企业蒸汽能耗需求预测模型的研究及建立[J].造纸科学与技术,2013,32(2):83-87. 被引量:6
  • 2杨宏韬,张德江,李秀兰,王秀英.遗传神经网络能耗预测模型在钢铁企业中的应用[J].长春工业大学学报,2007,28(B07):186-189. 被引量:14
  • 3Y Miyanaga, N Nagai, N Miki. ARMA Digital Lattice Filter Based on New Criterion[ J]. Circuits & Systems IEEE Transactions on, 1987,34(6) :617 - 628.
  • 4Box Jenkins. Time series analysis. Forecasting and control [J].Time, 1976,14.
  • 5S C R Winkelmann. Markov Chain Monte Carlo Analysis of Corre- lated Count Data[J]. Journal of Business & Economic Statistics, 2012,19 (4) :428 - 435.
  • 6I D Vrontos, P Dellaportas, D N Politis. Inference for some mult- ivariate ARCH and GARCH models[J].Journal of Forecasting, 2003,22(6 -7) :427 - 446.
  • 7S Geman, G D eman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1984, (6) : 721 -741.
  • 8P Mtiller. Applied Bayesian Modelling[J].Wiley, 2003,100 (469) :355 -356.

二级参考文献7

  • 1汪建均,胡宗义.ARMA模型在我国电力需求预测中的应用[J].经济数学,2006,23(1):64-68. 被引量:17
  • 2Martin T.Hagam.神经网络设计[M].戴葵,译.北京:机械工业出版社,2002.
  • 3Abdallah A S.Artificial neural network for forecasting residential electrical energy[J].International Journal of Energy Research,1999,23(8):649-661.
  • 4Sakamoto Y.Tonooka Y.Yanagisawa Y.Estimation of energy consumption for each process in the Japanese steel industry[J].International Journal of Energy Conversion and Management,1999,40(11):1 129-1 140.
  • 5吴波.造纸过程能源管理系统中的数据挖掘与能耗预测方法的研究[D].广州:华南理工大学,2012:16 -17.
  • 6李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].系统工程理论与实践,1999,19(2):65-69. 被引量:174
  • 7Metallurgical Energy Branch, CSM.我国钢铁工业吨钢综合能耗的剖析[J].冶金能源,1992,11(1):14-20. 被引量:18

共引文献17

同被引文献36

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部