期刊文献+

有限元方法中的光滑积分伪弱形式 被引量:1

A quasi weak form of smoothed integral for finite element method
下载PDF
导出
摘要 提出了一种光滑积分伪弱形式,将光滑积分拓展至被积函数非偏导项求解。结合光滑应变技术和伪弱形式,可实现有限元系统方程统一光滑积分求解,即对刚度矩阵和质量矩阵中的应变矩阵和形函数矩阵均可进行光滑积分处理,并转化为光滑子域的边界积分。光滑积分伪弱形式与光滑应变技术比较,增加了形函数矩阵不定积分处理过程,且没有降低有限元求解对形函数连续性的要求。不过,伪弱形式改变了单元积分的求解形式,连续质量矩阵求解也无需坐标映射和雅可比矩阵计算。以轴对称二维问题为研究对象,结果表明极度不规则三角形和四边形单元光滑积分伪弱形式在静态和动态有限元方程求解中也具有很好的精度。 A quasi weak form of smoothed integral is developed for the integrand that does not contain the derivative. In the formulations of finite element method, the smoothed integrals for strain matrix and shape functions can be handled respectively by smoothing strain technique and the present quasi weak form, and all the smoothed domain integrals in the stiffness matrix and consistent mass matrix can be transformed into line integral along boundary of smoothing cells. Comparing with the smoothing strain technique, an indefinite integral of shape functions is added in the quasi weak form, and the requirement for continuity of the shape functions is not decreased. However, the integral form is changed and the coordinate mapping and computing of Jacobian matrix can be avoided in the computation of consistent mass matrix. In this work, the proposed quasi weak form is extended to static and structure dynamic analyses of axisymmetric models. Numerical examples show that the proposed method has a good accuracy and convergence properties even for extremely irregular triangular and quadrilateral elements.
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第4期485-493,共9页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金重点(11232004)资助项目
关键词 伪弱形式 光滑积分 降维积分 光滑子域 光滑应变技术 不规则单元 spurious weak form smoothed integral reduced integral smoothing cells smoothing strain technique irregular elements
  • 相关文献

参考文献22

  • 1钱令希,张雄.结构分析中的刚体有限元法[J].计算结构力学及其应用,1991,8(1):1-14. 被引量:30
  • 2张洪武,钟万勰,钱令希.结构—饱和土壤相互作用的固结有限元分析[J].应用数学和力学,1992,13(10):891-899. 被引量:1
  • 3邢誉峰,钱令希.一致切线刚度法在三维弹塑性有限元分析中的应用[J].力学学报,1994,26(3):320-332. 被引量:7
  • 4Bathe K J. Finite Element Procedures [M]. Klaus- Jurgen Bathe, 2006.
  • 5Dolbow J,Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods[J]. Compu- tational Mechanics, 1999,23(3) : 219-Z30.
  • 6Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139 (1) :49-74.
  • 7Chen J S, Wu C T, Yoon S, et al. A stabilized con- forming nodal integration for Galerkin mesh-fleemethods [J]. International Journal for Numerical Methods in Enginee-ring ,2001,50(2) :435-466.
  • 8Liu G R,Dai K Y,Nguyen T T. A smoothed finite el- ement method for mechanics problems[,J]. Computa- tional Mechanics, 2007,39(6) :859-877.
  • 9Liu G R, Nguyen T T,Dai K Y, et al. Theoretical as- pects of the Smoothed Finite Element Method (SFEM) [J]. International Journal for Numerical Methods in Engineering ,2007,71 : 902-930.
  • 10Liu G R. A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods(Part I) theory [J]. Inter- national Journal for Numerical Methods in Engi- neering ,2010,81:1093-1126.

二级参考文献3

  • 1邢誉峰,博士学位论文,1992年
  • 2姜礼尚,庞之垣.有限元方法及其理论基础[M]人民教育出版社,1979.
  • 3(美)P.G.霍奇著,蒋〓秋,熊祝华.结构的塑性分析[M]科学出版社,1966.

共引文献35

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部