期刊文献+

周期结构后屈曲新算法及其应用 被引量:3

A novel algorithm for post-buckling analysis of periodic structures and its application
下载PDF
导出
摘要 提出了周期结构后屈曲分析的一种新算法。在屈曲点附近,通过加载模型和诱导后屈曲边值问题之间的相互切换,避开屈曲点附近刚度矩阵的奇异性,并诱导结构产生预期的后屈曲变形,避免了以往后屈曲算法中引入几何初始缺陷后对系统带来的可能影响。通过对三种由超弹性材料所构成的周期孔隙结构的后屈曲分析,验证了本文所提出的后屈曲算法的有效性和灵活性。分析了周期孔隙材料多向加载对屈曲模式转换的影响,以及后屈曲变形对弹性波传播带隙的影响,为周期结构中弹性波传播的调控提供良好的基础。 In this paper,a novel algorithm is proposed to simulate the post-buckling deformation of perio- dic structures under mechanical loadings. By switching between loading model and corresponding bound- ary condition model to induce the post-buckling deformation, the singularity of stiffness matrix around the buckling point is effectively avoided, and the post-buckling deformation can be triggered, which could eliminate the effect of geometric imperfections introduced by previous post-buckling algorithms. Through simulations of three 2D cellular solids made of hyperelastic materials,the validity and robustness of the new algorithm is verified. The transition among buckling modes through the control of bi-axial loading conditions is also discussed. It is further shown that the dynamic properties of the elastic wave propagation through the periodic structures can be tuned hy the control of the post-buckling deformation.
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第4期509-515,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11321202 11272281 11532001) 爆炸科学与技术国家重点实验室(北京理工大学)开放课题(KFJJ15-16M)
关键词 周期结构 孔隙软材料 后屈曲 带隙 弹性波调控 periodic structures soft cellular solids post-buckling band gap tunability of elastic wave
  • 相关文献

参考文献31

  • 1Vukusic P,Sambles J R. Photonic structures in biolo- gy[J]. Nature,2003,424(6950) :852-855.
  • 2Gibson L J, Ashby M F. Cellular Solids : Structure and Properties [M]. Cambridge: Cambridge Univer- sity Press, 1999.
  • 3Vigneron J P, Simonis P. Natural photonic crystals [J]. Ph ysica B : Condensed Matter, 2012,407 (20) : 4032-4036.
  • 4Libonati F, Vel:gani L. Understanding the structure- property relationship in cortical bone to design a bio- mimetic composite[J]. Composite Structures, 2016, 139 : 188-198.
  • 5Niu B,Wang B. Directional mechanical properties and wave propagation directionality of Kagome honey- comb structures[J]. European Journal of Mechanics- A/Solids, 2016,57 : 45-58.
  • 6Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Re- view Letters, 1987,58(20) : 2059-2062.
  • 7John S. Strong localization of photons in certain disor- dered dielectric superlattices [J ]. Physical Review Letters, 1987,58(23) : 2486-2489.
  • 8Sigalas M M, Economou E N. Elastic and acousticwave band structure[J]. Journal of Sound and Vi- bration, 1992,158(2) :377-382.
  • 9Kushwaha M S, Halevi P,Dobrzynski L,et al. Acous- tic band structure of periodic elastic composites[J]. Physical Review Letters, 1993,71 (13) :2022-2025.
  • 10Kittel C. Introduction to Solid State Physics [M]. New York : Wiley, 2005.

二级参考文献12

  • 1温激鸿,王刚,郁殿龙,赵宏刚,刘耀宗,温熙森.声子晶体振动带隙及减振特性研究[J].中国科学(E辑),2007,37(9):1126-1139. 被引量:52
  • 2钟万勰.一个多用途的结构分析程序JIGFEX(一)[J].大连工学院学报,1977,17(3):19-42.
  • 3钟万勰.一个多用途的结构分析程序JIGFEX(二)[J].大连工学院学报,1977,17(4):14-35.
  • 4Lin Z Y,Zhang X X, Mao Y,et al. Locally resonant sonic materials[J]. Science, 2000,289 : 1734-1736.
  • 5Sheng P, Zhang X X, Liu Z, et al. Locally resonant sonic materials [J]. Physica B, 2003,338 (1-4) : 201- 205.
  • 6Yu D L,Wen J H,Zhao H G, et al. Vibration reduc- tion by using the idea of phononic crystals in a pipe- conveying fluid[J]. Journal of Sound and Vibration, 2008,318(1-2) : 193-205. (in Chinese)).
  • 7Zhang S W, Wu J H, Hu Z P. Low-frequency locally resonant band-gaps in phononic crystal plates withperiodic spiral resonators [J]. Journal of Applied Physics, 2013,113 (16) :1-8. (in Chinese) ).
  • 8Lu X,Lin J H,Zhong W X. Subspace iteration meth- od in multi-level substructure systemsl-J]. Computers and Structures, 1989,33(2) : 459-462.
  • 9Sigmund O,Jensen J S. Systematic design of phononic band gap materials and structures by topology optimi- zation[J]. Philosophical Transactions of the Royal Society A ,2003,361 : 1001-1019.
  • 10宋卓斐,王自东,王艳林,王强松.一维杆状声子晶体的带隙特性[J].振动与冲击,2010,29(2):145-148. 被引量:10

共引文献12

同被引文献7

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部