期刊文献+

受迫简谐响应分析中的特征值问题(英文) 被引量:3

Eigenvalue problems in forced harmonic responses analysis in structural dynamics
下载PDF
导出
摘要 无阻尼结构的受迫振动的共振频率与自由振动的特征值直接相关。在频域响应谱中,共振频率对应于响应峰值位置。指出频谱中的低谷(相对最小值)对应的频率也可用特征值问题求解。当最小值为0时,对应的频率是著名的反共振频率。另一种可能是,处于两个共振频率之间存在非零的最小响应,对应的频率称为最小响应频率。基于特征值问题的列式,反共振频率或最小响应频率的灵敏度分析可以直接通过已有的特征值灵敏度分析方法求解。给出了详细的数学推导并通过数值算例验证。 In structural dynamics, it is well known that resonance frequencies in forced harmonic response of an undamped structure are related to the eigenvalue for free vibration problem. These resonance frequencies are the peaks in the frequency response plots. In this paper,it is shown that the frequencies for the valleys (lowest points in vibration amplitude) in the frequency response plot can also be computed by solving eigenvalue problems associated with the forced harmonic response of the system. When the minimum response is zero, the corresponding frequen- cies are the well-known antiresonsnt frequencies. Otherwise, these are minimum response frequency between two resonances. Using the eigenvalue formulation, the sensitivities of the antiresonant or minimum response frequency can be readily computed using eigenvalue sensitivity results for general non-symmetrical matrices. Detailed formulations are presented in the paper. Several numerical examples are included to illustrate the general formulations.
作者 王波平
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第4期549-555,共7页 Chinese Journal of Computational Mechanics
基金 工业装备结构分析国家重点实验室开放新计划(GZ1301)资助项目
关键词 共振 反共振 最小化频域响应 灵敏度分析 resonant anti-resonant minimum response frequencies sensitivity analysis
  • 相关文献

参考文献17

  • 1Wang B P, Kirk J P. Matrix formulation for minimum response of undamped structure [J]. AIAA Journal, 2006,44(12) : 3072-3079.
  • 2Miu D K. Physical interpretation of transfer function zeros for simple control systems with mechanical flexibilities [J]. Journal of Dynamic Systems, Mea- surement ,and control, 1991,113(3) :419-424.
  • 3LaCivita M, Sestieri A. On antiresonance interpreta- tion and energy concentration along continuous 1- dimensional systems [ A ]. IMAC Conference [ C ]. 1997.
  • 4Yasuda M,Gu R, Nishihara O, et al. Development of antiresonance enforced active vibration absorber sys- tem[J]. JSME International Journal Series C-Dy- namics ControlRobotics Design Manufacturing, 1996,39(3) :464-469.
  • 5Stoppel J. Structural dynamic aspects of rotor nodal isolation [A]. Second International Symposiumon Aeroelasticity and Structural Dynamics-Collected Papers of the Symposium [C]. Aachen, West, Ger. 19850401-19850403 ,Conference Code09347.
  • 6Kajiwara I, Ngamatsu A, Seto K. A technique of structural dynamic optimization using sensitivities of resonance and anti-resonance frequencies [A]. Cur- rent Topics on Structural Mechanics [C]. 1989.
  • 7Shepard G D. On anti-resonances, with application to control of structures [A]. Proceedings of the 3"d In- ternational Modal Analysis Conference [C]. Orlando, FL,1985.
  • 8Yao G C, Lien N. Application of anti-resonance fre- quency theory in seismic protectionofexhibition ob- jects[J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 1998,10(2) .. 307-316.
  • 9Lien N, Yao G C. Antiresonance theory applied on the seismic protection method of nonstructuralelements inbuildings [A]. Proceedings of Weather Prediction and Seismic Research Conference [C]. Taipei, Taiwan, 1997.
  • 10Ambrogio W D, Fregolent A. The use of antireso- nances for robust model updating [J]. Journal of Sound and Vibration, 2000,23a(2) : 227-243.

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部