期刊文献+

Building Damage Extraction from Post-earthquake Airborne LiDAR Data 被引量:1

Building Damage Extraction from Post-earthquake Airborne LiDAR Data
下载PDF
导出
摘要 Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging (LiDAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith (0) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation (σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types (i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage. Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging (LiDAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith (0) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation (σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types (i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1481-1489,共9页 地质学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.41404046) the World Bank GFDRR group for providing financial support to acquire the data
关键词 airborne LiDAR surface normal building damage EARTHQUAKE damage extraction airborne LiDAR, surface normal, building damage, earthquake, damage extraction
  • 相关文献

参考文献10

二级参考文献99

共引文献170

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部