期刊文献+

钙基催化吸收剂对玉米秸秆热解气化制氢特性的影响 被引量:6

Effects of Calcium-based Catalyst / Absorbent on Hydrogen Production of Corn Stalk Pyrolysis-gasification
下载PDF
导出
摘要 在一个2段式生物质热解气化装置上考察了钙基催化吸收剂对玉米秸秆制氢特性的影响,结果表明:CaO添加可原位吸收气化过程中生成的CO_2,强化制氢过程向生成更多H_2的方向移动。当热解气化温度为650℃、S/B为2、CaO/C摩尔比为1时,产气中H_2体积分数从28.7%上升至56.2%,H_2产率则从64.3 m L/g上升至195.8 m L/g,而CO_2体积分数由21.5%下降至1.1%。而且,CaO的CO_2吸收强化性能与气化温度密切相关,在600~700℃范围内,玉米秸秆热解气化可获得很高的H2体积分数和较高的H2产率。以CaO吸收剂为载体进一步引入Ni O活性组分,可降低产气中小分子碳氢气体,提高产气中的H2体积分数和产率。在NiO负载量为10%时,产气中H2体积分数可达63.7%,而H_2产率对比添加CaO时则接近翻倍,达到了341.3 m L/g。 The influence of calcium-based catalyst / absorbent on hydrogen production of corn stalk pyrolysis-gasification was investigated in a two-stage fixed-bed biomass pyrolysis-gasification system. the results showed that addition of CaO could in-situ absorb CO_2 generated from the gasification process,thus enhanced the gasification process to form more H_2. As the pyrolysis / gasification temperature was 650°C,mass ratio of steam to biomass( S / B) was 2,and molar ratio of CaO to C was 1,compared with the trail without CaO addition,H_2 concentration in the product gas was increased greatly from 28. 7% to 56. 2%,H_2 yield was increased from 64. 3 m L / g to 195. 8 m L / g,while CO_2 concentration was decreased sharply from 21. 5% to 1. 1%. CaCO_3 could be found in the used absorbent after gasification,which further proved the enhancing effect of CaO addition. Moreover,the enhancing effect of CO_2 absorption of CaO was closely related to the gasification temperature. High H_2 concentration and yield could be obtained with gasification temperature in the range of 600℃ to 700℃ from the pyrolysis-gasification of corn stalk.As gasification temperature higher than 700℃,the CO_2 absorption capability of CaO was weakened,CaO mainly acted as a catalyst during the gasification process. The introduction of active NiO to CaO absorbent could decrease the content of small molecular hydrocarbon gases in the product gas,and increase the H_2 concentration and yield. With Ni O loading of 10% on CaO,H_2 concentration in product gas could achieve 63. 7%,while H_2 yield was close to double of that with CaO addition,which reached 341. 3 m L / g.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2016年第8期216-220,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 生物质热化学技术国家重点实验室开放基金项目 国家自然科学基金项目(51306066)
关键词 玉米秸秆 热解气化 制氢 钙基催化吸收剂 催化作用 CO2吸收 corn stalk pyrolysis-gasification hydrogen production calcium-based catalyst / absorbent catalytic effect CO2 absorption
  • 引文网络
  • 相关文献

参考文献20

  • 1CHANG A C C, CHANG H F, LIN F J, et al. Biomass gasification for hydrogen production [ J]. International Journal of Hydrogen Energy, 2011, 36(21) : 14252 - 14260.
  • 2NI M, LEUNG D Y C, LEUNG M K H, et al. An overview of hydrogen production from biomass [ J]. Fuel Processing Technology, 2006, 87(5): 461 -472.
  • 3吉恒松,王谦,成珊,何志霞,王爽.基于感应加热的生物质气化制氢试验[J].农业机械学报,2013,44(10):183-187. 被引量:2
  • 4王立群,陈兆生.生物质气化制备燃气过程的[火用]分析[J].农业机械学报,2013,44(S1):143-148. 被引量:4
  • 5潘贤齐,苏德仁,周肇秋,刘华财,阴秀丽,吴创之.生物质流化床气化中试实验研究[J].农业机械学报,2014,45(10):175-179. 被引量:9
  • 6FLORIN N H, HARRIS A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents [ J ]. Chemical Engineering Science, 2008, 63 (2) : 287 - 316.
  • 7FRANCO C, PINTO F, GULYURTLU I, et al. The study of reactions influencing the biomass steam gasification process [J]. Fuel, 2003, 82(7) : 835 -842.
  • 8李斌,陈汉平,杨海平,王贤华,张世红,代正华.生物质水蒸气气化制氢模拟研究[J].可再生能源,2012,30(2):58-61. 被引量:7
  • 9LI B, WEI L, YANG H, et al. The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production [J]. Energy, 2014, 68:248-254.
  • 10LI B, CHEN H, YANG H, et al. Modeling and simulation of calcium oxide enhanced H2 production from steam gasification of biomass [ J]. Journal of Biobased Materials and Bioenergy, 2011, 5 (3) : 378 - 384.

二级参考文献42

  • 1陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报,2006,27(12):1276-1284. 被引量:26
  • 2CLARK W W,RIFKIN J,O'CONNOR T,et al. Hydro- gen energy stations: along the roadside to the hydrogen economy [J]. Utilities Policy, 2005,13 ( 1 ) : 41-50.
  • 3KALINCI Y, HEPBASLI A, DINCER I. Biomass-based hydrogen production: A review and analysis [J]. Inter- national Journal of Hydrogen Energy,2009,34 (21) :8799-8817.
  • 4BALAT H,KIRTAY E. Hydrogen from biomass - present scenario and future prospects [J]. International Journal of Hydrogen Energy, 2010,35 (14) : 7416-7426.
  • 5TANKSALE A, BELTRAMINI J N, LUG M. A review of catalytic hydrogen production processes from biomass [J]. Renewable and Sustainable Energy Reviews, 2010,14(1) : 166-182.
  • 6SAXENA R C,SEAL D,KUMAR S,et al. Thermo- chemical routes for hydrogen rich gas from biomass: A review [J].Renewable and Sustainable Energy Re- views,2008,12(7) : 1909-1927.
  • 7COHCE M K,DINCER I, ROSEN M A. Thermodynam- ic analysis of hydrogen production from biomass gasifi- cation [J].International Journal of Hydrogen Ener- gy, 2010,35 (10) : 4970-4980.
  • 8CZERNIK S, EVANS R, FRENCH R. Hydrogen from biomass-production by steam reforming of biomass pyrol- ysis oil [J]. Catalysis Today,2007,129(3-4) :265-268.
  • 9LV P, YUAN Z, MA L, et al. Hydrogen-rich gas pro- duction from biomass air and oxygen/steam gasification in a downdraft gasifier[J].Renewable Energy,2007,32 (13) :2173-2185.
  • 10Saxena R C,Seal D, Kumar S, et al. Thermo-chemical routes for hydrogen rich gas from biomass: a review [ J ]. Renewable and Sustainable Energy Reviews ,2008,12 (7) :1 909 -1 927.

共引文献16

同被引文献110

引证文献6

二级引证文献46

;
使用帮助 返回顶部