期刊文献+

微通道内纳米制冷剂流动沸腾传热预测模型 被引量:6

Prediction Model for Flow Boiling Heat Transfer of Nanorefrigerant in Microchannels
下载PDF
导出
摘要 以R141b制冷剂为基液,Al_2O_3为纳米颗粒,采用两步法制备了质量分数分别为0.2%、0.5%和0.8%的Al_2O_3-R141b纳米制冷剂,并进行了纳米制冷剂及R141b纯制冷剂在水力直径为1.33 mm的矩形微通道内流动沸腾传热实验。实验工况范围:饱和压力为176 k Pa,入口过冷度为6~12℃,体积流量为20~50 L/h,热流密度为11.1~26.6 k W/m^2。实验结果与7个纯工质传热模型、2个纳米制冷剂传热模型进行比较评价。结果发现,在本实验研究范围内,纯工质传热模型不适用于纳米制冷剂传热系数的预测;Peng-Ding纳米制冷剂传热模型与KimMudawar纯工质传热模型组合对纳米制冷剂传热系数的预测值最接近实验值,平均绝对误差为17.22%,且能较好地反映纳米颗粒对流动沸腾传热影响的规律;结合实验数据对Peng-Ding模型的纳米影响因子(纳米制冷剂与纯制冷剂的传热系数之比)关联式进行修正,新关联式具有较好的预测效果,平均绝对误差为15.2%,且与Bertsch模型的组合能较好地预测微通道内纳米制冷剂传热系数,平均绝对误差降为16.4%。 R141b and Al2O3 were selected as base fluid and nanoparticle,respectively,and the two-step method was used to prepare Al2O3-R141 b nanorefrigerant. The mass fractions were 0. 2%,0. 5% and0. 8%,respectively. The flow boiling heat transfer of Al2O3-R141 b nanorefrigerant and R141 b refrigerant in rectangular microchannels with hydraulic diameter of 1. 33 mm was experimentally investigated.Experimental conditions included saturation pressure of 176 k Pa,inlet subcooling from 6℃ to 12℃,volume flow rate from 20 L / h to 50 L / h,and heat flux from 11. 1 k W / m2 to 26. 6 k W / m2. The experimental results were used to evaluate seven heat transfer models for pure working fluid and two heat transfer models for nanorefrigerant. Results showed that the pure working fluid heat transfer models were not suitable for nanorefrigerant. The Peng-Ding heat transfer model for nanorefrigerant combined with the Kim-Mudawar model for pure working fluid gave relatively good agreement with experimental data,the mean absolute error( MAE) was 17. 22%,which reflected the effect of nanoparticles on flow boiling heat transfer. A new nanoparticle impact factor( the ratio of heat transfer coefficient of nanorefrigerant to refrigarant) correlation was proposed based on Peng-Ding model and experimental data, the new correlation had good predictability with MAE of 15. 2%,and the new correlation combined with the Bertsch model provided good prediction of heat transfer coefficient for nanorefrigerant in microchannels,and the MAE was decreased to 16. 4%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2016年第8期346-355,共10页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(21276090) 广西自然科学基金项目(2014GXNSFBA118051)
关键词 微通道 纳米制冷剂 传热模型 流动沸腾 传热系数 microchannel nanorefrigerant heat transfer model flow boiling heat transfer coefficient
  • 相关文献

参考文献29

  • 1宗露香,徐进良,刘国华.微通道内种子汽泡抑制沸腾不稳定性研究[J].农业机械学报,2014,45(3):341-346. 被引量:2
  • 2冯振飞,何荣伟,朱礼,林清宇,覃杏珍,覃宇奔,黄祖强.周向平行细通道夹套的换热特性[J].过程工程学报,2015,15(6):901-908. 被引量:16
  • 3KHAN M G, FARTAJ A. A review on microchannel heat exchangers and potential applications [ J]. International Journal of Energy Research, 2011, 35 (7) : 553 - 582.
  • 4彭浩,丁国良,姜未汀,胡海涛,高屹峰.纳米制冷剂管内流动沸腾换热特性[J].化工学报,2008,59(S2):70-75. 被引量:9
  • 5JIANG W T, DING G L, PENG H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants [ J] International Journal of Thermal Sciences, 2009, 48 (6) : 1108 - 1115.
  • 6ALAWI O A, SIDIK N A C. Influence of particle concentration and temperature on the thermophysieal properties of CuO/R134a nanorefrigerant [J]. International Communications in Heat and Mass Transfer, 2014, 58:79 -84.
  • 7PARK K J, JUNG D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning [J]. Energy and Buildings, 2007, 39(9) : 1061 - 1064.
  • 8BI S S, SHI L, ZHANG L L. Application of nanoparticles in domestic refrigerators [ J]. Applied Thermal Engineering, 2008, 28(14 -15): 1834 -1843.
  • 9PENG H, DING G L, JIANG W T, et al. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube [ J]. International Journal of Refrigeration, 2009, 32 (6) : 1259 -1270.
  • 10HENDERSON K, PARK Y G, LIU L, et al. Flow-boiling heat transfer of R - 134a-based nanofluids in a horizontal tube [J]. International Journal of Heat and Mass Transfer, 2010, 53 (5 -6) : 944 -951.

二级参考文献50

  • 1施明恒,帅美琴,赖彦锷,李强,宣益民.纳米颗粒悬浮液池内泡状沸腾的实验研究[J].工程热物理学报,2006,27(2):298-300. 被引量:12
  • 2黄祖强,陈渊,钱维金,童张法,黎铉海.机械活化对木薯淀粉醋酸酯化反应的强化作用[J].过程工程学报,2007,7(3):501-505. 被引量:47
  • 3Harirchian T. Two-phase flow and heat transfer in mieroehanenls[ D1. West Lafayette: Purdue University, 2010.
  • 4Kandlikar S G. High flux heat removal with microchannels-a roadmapof challenges and opportunities [ J ]. Heat Transfer Engineering, 2005, 26(8): 5-14.
  • 5Fang C, David M, Rogacs A,et al Frontiers in Heat and Mass transfer, Rops C M, Geers L F G, Lindken R,et al. Explosive bubble growth during flow boiling in micro-channels[ C ]//Proceedings of 5th European Thermal-Science Conference on Micro and Nano-scale Heat Transfer, 2008:18 -22.
  • 6Zhang L, Koo J M, Jiang L, et al. Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions[ J]. Journal of Microchannel systems, 2002, 11 ( l ) : 12 - 19.
  • 7Harirchin T, Garimella S V. Microchannel size effects on local flow boiling heat transfer to a dielectric fluid [ Jl. International Journal of Heat and Mass Transfer, 2008, 51 ( 15 - 16) : 3724 -3735.
  • 8Na Y W. Forced convective flow boiling and two-phase flow phenomena in a microchannel[ D 1. Gainesville: University of Florida, 2008.
  • 9Thome J R. Start-of-the-art overview of boiling and two-phase flows in microchannels [ J ] ~ Heat Transfer Engineering, 2006, 27 (9) : 4 - 19.
  • 10Wu H Y, Cheng P. Boiling instability in parallel silicon microchannels at different heat flux[ J]. International Journal of Heat and Mass Transfer. 2004, 47( 17 - 18) :3631 -3641.

共引文献23

同被引文献31

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部