期刊文献+

一种适应于非完备标签数据和标签关联性的多标签分类方法

A multi-label classification method for disposing incomplete labeled data and label relevance
下载PDF
导出
摘要 多标签分类已在很多领域得到了实际应用,所用标签大多具有很强的关联性,甚至存在非完备标签或部分标签遗失。然而,现有的多标签分类算法难以同时处理这两种情况。基于此,提出一种新的概率模型处理方法,实现同时对具有标签关联性和遗失标签情况进行多标签分类。该方法可以自动获知和掌握多标签的关联性。此外,通过整合遗失的标签信息,该方法能够提供一个自适应策略来处理遗失的标签。在完备标签和非完备标签的数据上进行实验,结果表明,与现有的多标签分类算法相比,提出的方法得到了较好的分类预测评价值。 Multi-label classification methods have been applied in many real-world fields, in which the labels may have strong relevance and some of them even are incomplete or missing. However, existing multi-label classification algorithms are unable to handle both issues simultaneously. A new probabilistic model that can automatically learn and exploit multi-label relevance was proposed on label relevance and missing label classification simultaneously. By integrating out the missing information, it also provides a disciplined approach to handle missing labels. Experiments on a number of real world data sets with both complete and incomplete labels demonstrated that the proposed method can achieve higher classification and prediction evaluation scores than the existing multi-label classification algorithms.
出处 《电信科学》 北大核心 2016年第8期82-89,共8页 Telecommunications Science
基金 浙江省教育科学规划基金资助项目(No.2016SCG188) 浙江省自然科学基金资助项目(No.LY14C03007)~~
关键词 非完备标签 标签关联性 多标签分类 概率模型 incomplete label, label relevance, multi-label classification, probabilistic model
  • 相关文献

参考文献6

二级参考文献99

  • 1卫志华.中文文本多标签分类研究[D].上海:同济大学,2010.
  • 2数据堂[EB/OL].[2013—03—30].hffp://www.datatang.com/.
  • 3NGUYEN C T,ZHAN D C,ZHOU Z H.Multi-modal image annotation with multi-instance multi-label LDA[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Menlo Park:AAAI Press,2013:1558-1564.
  • 4AGRAWAL R,GUPTA A,PRABHU Y,et al.Multi-label learning with millions of labels:recommending advertiser bid phrases for Web pages[C]// Proceedings of the 22nd International Conference on World Wide Web.Berlin:Springer,2013:13-24.
  • 5BARUTCUOGLU Z,SCHAPIRE R E,TROYANSKAY O G.Hierarchical multi-label prediction of gene function[J].Bioinformatics,2006,22(7):830-836.
  • 6YANG S J,JIANG Y,ZHOU Z H.Multi-instance multi-label learning with weak label[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Menlo Park:AAAI Press,2013:1862-1868.
  • 7XU M,LI Y,ZHOU Z.Multi-label learning with PRO loss[C]//Proceedings of the 27th AAAI Conference on Artificial Intelligence.Menlo Park:AAAI Press,2013:998-1004.
  • 8XU M,JIN R,ZHOU Z H.Speedup matrix completion with side information:Application to multi-label learning[C]//Advances in Neural Information Processing Systems 26.Cambridge:MIT Press,2013:2301-2309.
  • 9ZHANG Y,ZHOU Z.Multilabel dimensionality reduction via dependence maximization[J].ACM Transactions on Knowledge Discovery from Data,2010,4(3):1-21.
  • 10WANG H,DING C,HUANG H.Multi-label linear discriminant analysis[C]// Proceedings of the 11th European Conference on Computer Vision.Berlin:Springer Press,2010:126-139.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部