摘要
采用真空自耗电弧炉熔炼添加硼元素的Ti-1023合金铸锭,对其进行一定的变形得到锻造棒材。利用金相显微镜、电子探针、万能材料试验机等设备对其进行宏观、微观组织及性能分析,研究硼元素对铸态与锻态Ti-1023合金组织与性能的影响。研究发现,硼元素作为一种高效的细化剂,能显著细化Ti一-1023合金的铸态组织。硼化物倾向于以链状析出,对合金进行充分变形,能使硼化物充分破碎。微量的硼可以显著提高钛合金的强度,当硼含量在0.1%~0.2%(质量分数)时,Ti-1023合金的抗拉强度与屈服强度变化不大,但是塑性下降明显。为了得到良好的强度一塑性匹配,最佳硼添加量不应大于0.1%。
Experimental ingots of Ti-1023 alloy with boron which were obtained by vacuum consumable arc melting furnace were forged into bars. Metallographic microscope, electron probe and mechanical tests were used to analyze macro and micro structure and performance. This paper studied the effect of boron on the microstructure and properties of Ti-1023 alloy as cast and forged. It is found that the boron as a highly effective element can significantly refine the grain size of Ti-1023 cast alloy. Borides tend to precipitate in chain shape and sufficient deformation can make TiB fully broken. Trace amount of boron can significantly increase the strength of titanium alloy and when the content of boron is between 0. 1% and 0. 2% ( w/% ), the tensile and yield strength are barely changed while plasticity decreases signifi- cantly. To get excellent strength and plasticity match, the best boron addition amount should not be more than 0. 1%.
出处
《钛工业进展》
CAS
北大核心
2016年第4期26-30,共5页
Titanium Industry Progress
关键词
Β钛合金
TI-1023
硼
组织与性能
β titanium alloy
Ti-1023
boron
microstructure and tensile properties