期刊文献+

改进的EEMD算法在时域航空电磁信号降噪中的研究 被引量:10

Research of Improved EEMD Algorithm for Time-domain Airborne Electromagnetic Signal De-noising
下载PDF
导出
摘要 常规降噪方法在应用于时域航空电磁信号降噪时需根据噪声情况人为进行参数调整,自适应性较差。总体经验模态分解(EEMD)算法对非线性、非平稳信号处理具有良好的自适应特性,传统的EEMD算法进行噪声抑制是将高频本征模态分量滤除,将低频分量重构得到降噪信号,这种方法易失掉高频分量中的有效信号。本文提出一种改进的EEMD降噪算法,应用于时域航空电磁信号的处理。该方法结合时域航空电磁信号的衰减特性,将信号EEMD分解后得到本征模态分量,其中包含信号和噪声,经Savitzky-Golay平滑滤波,再将高频部分进行阈值去噪,最后得到干净的本征模态分量进行重构。实验结果表明在输入信号信噪比小于等于15 d B的情况下,输出信噪比能够提高12 d B左右,在抑制噪声的同时保留了更多有效信息。 Common noise reduction methods need to artificially adjust the parameters according to the noise situation when applied to time domain airborne electromagnetic noise reduction,adaptability was poor. The ensemble empirical mode decomposition( EEMD) has good adaptive characteristic for nonlinear,non-stationary signal processing,the traditional signal denoising method based on EEMD reconstructed the denoised singal by combining the low-frequency components and filtering out the high-frequency components,this approach was easily losing effective signal in high-frequency components. This paper proposed an improved EEMD noise reduction method,applied to the time-domain airborne electromagnetic signal processing.This method combined with the attenuation characteristics of the time-domain airborne electromagnetic signal,decomposed the signal into intrinsic mode function which contains signal and noise by EEMD,then through the Savitzky-Golay smoothing filtered and threshold denoised the high frequency part,finally reconstructed the denoised signal by the clear Imf components.Experimental results show that in the case of the input signal noise ratio less than or equal 15 d B,the output signal noise ratio can be increased by about 12 d B,this approach not only reduces noise but also retains information more effectively.
作者 张婷 李双田
出处 《信号处理》 CSCD 北大核心 2016年第7期771-778,共8页 Journal of Signal Processing
基金 863课题(2013AA063904-5)
关键词 时域航空电磁信号 总体经验模态分解 Savitzky-Golay滤波 阈值去噪 time-domain airborne electromagnetic signal ensemble empirical mode decomposition Savitzky-Golay smoothing filter threshold denoise
  • 相关文献

参考文献14

  • 1Daniel L. Off-time denoising :is stacking the solution? [ R]. Technical Report THEM2001-1,2001.
  • 2Bouchedda A, Chouteau M, Keating P, et al. Sferics noise reduction in time-domain electromagnetic systems: applica- tion to MegaTEMII signal enhancement [ J ]. Exploration Geophysics, 2010, 41 (4) :225-239.
  • 3Reninger P A, Martelet G, Deparis J, et al. Singular value decomposition as a de-noising tool for airborne time do- main electromagnetic data [ J ]. Journal of Applied Geo- physics, 2011,75 (2) :264-276.
  • 4陈斌,陆从德,刘光鼎.基于核主成分分析的时间域航空电磁去噪方法[J].地球物理学报,2014,57(1):295-302. 被引量:22
  • 5Norden E. Huang,Zheng Shen,Steven R. Long. The em-pirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc. R. Soc. Lond. A,1998, 454:903-995.
  • 6Tong Wang, Mingcai Zhang, Qihao Yu, et al. Comparing the applications of EMD and EEMD on time-frequency a- nalysis of seismic signal [ J ]. Journal of Applied Geophys- ics,2012,83:29-34.
  • 7Zhaohua Wu, Norden E Huang. Ensemble empirical mode decomposition: a noise assisted data analysis method [ J ]. Advances in Adaptive Data Analysis ,2008,1 ( 1 ) : 1-41.
  • 8陈凤林.一种新的基于EMD模态相关的信号去噪方法[J].西华大学学报(自然科学版),2009,28(6):20-24. 被引量:20
  • 9赵学智,叶邦彦,陈统坚.基于奇异值曲率谱的有效奇异值选择[J].华南理工大学学报(自然科学版),2010,38(6):11-18. 被引量:29
  • 10Savitzky A, Golay M J E. Smoothing and differentiation of databy simplified least squares procedures [ J ]. Analytical Chemistry, 1964,36 : 1627-1639.

二级参考文献52

  • 1张昌达.航空时间域电磁法测量系统:回顾与前瞻[J].工程地球物理学报,2006,3(4):265-273. 被引量:34
  • 2孙艳争,黄炜,余波.基于EMD的非线性信号自适应分析[J].电子科技大学学报,2007,36(1):24-26. 被引量:11
  • 3HUANG N E, SHEN Z, LONG S R et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and-stationary Time Series Analysis[J]. Proc R Soc Lond A, 1998,454( 1971 ) :903- 995.
  • 4BOUDRAA A O, CEXUS J C. EMD-based Signal Filtering [ J ]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (6) :2196-2202.
  • 5Ahmed S M,Alzoubi Q,Abozahhad M.A hybrid ECG compression algorithm based on singular value decomposition and discrete wavelet transform[J].Journal of Medical Engineering and Technology,2007,31(1):54-61.
  • 6Shin K,Feraday S A,Harris C J,et al.Optimal autoregressive modelling of a measured noisy deterministic signal using singular value decomposition[J].Mechanical Systems and Signal Processing,2003,17(2):423-432.
  • 7Vanlanduit S,Cauberghe B,Guillaume P.Reduction of large frequency response function data sets using robust singular value decomposition[J].Computers and Structures,2006,84(12):808-822.
  • 8Bianchi T,Argenti F.SVD-based techniques for zero-padded block transmission over fading channels[J].IEEE Transactions on Signal Processing,2007,55(2):594-604.
  • 9Cempel C.Generalized singular value decomposition in multidimensional condition monitoring of machines:a proposal of comparative diagnostics[J].Mechanical Systems and Signal Processing,2009,23(3):701-711.
  • 10Yang W X,Peter W T.Development of an advanced noise reduction method for vibration analysis based on singular value decomposition[J].NDT&E International,2003,36(6):419-432.

共引文献76

同被引文献97

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部