期刊文献+

结合分形理论和修改的方向最大最小方差的居民地提取方法 被引量:2

Fractal Feature and Direction Variances(FFDV):A New Algorithm for Urban Area Extraction from Remote Sensing Image
下载PDF
导出
摘要 传统的居民地提取方法存在以下不足:第一是提取的居民地存在误判的情况;第二是提取的居民地边界不准确,效率低;第三是很难适用于不同空间分辨率的图像。为克服这些问题,本文提出了一种基于分形理论和方向最大方差(DMAV)和修改的方向最小方差(MDIV)的居民地提取方法,算法共分为三个步骤:第一步是利用分形特征和修改的方向最小方差提取居民地的候选区域;第二步是利用形态学滤波和面积阈值法除去干扰区域,并对提取的居民地区域进行修整;最后是利用方向最大最小方差,对居民地边界进行精确的定位。本文用了大量的遥感图像验证了提出算法,实验证明,本文方法是精确的、有效的。 Conventional methods for urban area extraction have several shortcomings: Firstly, there are false detected regions. Secondly, the edge of extracted urban area is not precise. The third is that they can not fit to images with different resolutions. To overcoming these disadvantages, we proposed a new algorithm based on fraetal, direction maximal variance (DMAV) and mended direction minimal variance (MDMIV) to extract urban areas exactly. It is divided into three steps: Firstly fractal and MDMIV are used to detect candidate urban regions. Secondly, morphologic and area-threshold are used to eliminate eyelets and get rid of the disturbing small regions. Finally, we use DMAV and MDMIV to find the accurate edge point positions. Lots of experiment results prove that the proposed algorithm is valide and accurate.
出处 《信号处理》 CSCD 北大核心 2016年第8期883-888,共6页 Journal of Signal Processing
基金 国家自然科学基金(41301492)资助
关键词 居民地提取 分形特征 方向最大方差 方向最小方差 形态学滤波 urban area extraction fractal direction maximal variance direction minimal variance morphologic
  • 相关文献

参考文献17

  • 1Bessettes V, Desachy J. Extraction and classification of urban areas on spot images [ C ]//In 1998 International Geoscience and Remote Sensing Symposium Proceedings ( IGARSS'98), 1998,4:2583-2586.
  • 2Piotr Tokarczyk, Jan Dirk Wegner, Stefan Walk, et al. Fea- ture, Color Spaces, and Boosting: Ner Insights on semantic Classification of Remote Sensing Images [ J ]. IEEE Trans. Geosci. Remote Sens. , 2015, 53 (1) : 280-295.
  • 3Chu He, Guisong Xia, I-Iong Sun. An Adaptive and her- ative Method of Urban Area Extraction From SAR Images [J ]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 504-507.
  • 4Li J, Narayanan R M. Intergrated spectral and spatial in- formation mining in remote sensing imagery [ J ]. IEEE Trans. Geosci. Remote Sens. , 2004, 42(3) :673-685.
  • 5Rellier G, Deseombers X, Falzon F, et al. Texture, fea- ture analysis using a Gauss-Markov model in hyperspec- tral image classification[ J]. IEEE Trans. Geosci. Re- mote Sens. , 2004, 42(7) :1543-1551.
  • 6Beril Sirmacek, Cem Unsalan. Urban Area Detection U- sing Local Feature Points and Spatial Voting [J].IEEE Geoscience and Remote Sensing Letters, 2010, 7 ( 1 ) : 146-150.
  • 7Beril Sirmacek, Cem Unsalan. Urban-Area and Buiding Detection Using SIFT Keypoints and Graph Theory [ J ]. IEEE Trahsactions on Geoscience and Remote Sensing, 2009, 47(4) :1156-1167.
  • 8Bessettes V, Desaehy J, Lefevre M J. Use of Directional Variance for Urban Area Analysis on Simulated Spot 5 Images[ C]//2000 International Genscience and Remote Sensing Symposium Proceedings, 2000, 7:2890-2892.
  • 9Pablo Ruiz, Javier Mateos, Gustavo Camps-VailS, et al. Bayesian Active Remote Sensing Image Classification [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52 (4) :2186-2196.
  • 10Camps-Vails G, Bruzzone L. Kernel-based methods for hyperspectral image classification [ J ]. IEEE Trans. Geosci. Remote Sens. , 2005, 43(6) :1351-1362.

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部