期刊文献+

一种基于用户互动话题的微博推荐算法 被引量:2

A User Interaction Topic Based Microblog Recommendation Algorithm
下载PDF
导出
摘要 随着社交网络的发展,微博逐渐成为人们获取信息的重要来源。然而随着用户的增多,微博中的信息过载问题也越来越严重,如何快速准确地为用户推荐感兴趣的微博已经成为研究的热点。与传统的推荐技术不同,微博中的用户具有天然的社交关系,这为推荐算法提供了额外的用户信息,因此,融合了用户社交关系的社会化推荐方法日益受到重视。但是,现有的方法大多只利用了固定的用户社交关系或简单的互动行为,事实上,用户互动行为的出发点必然是用户与好友的共同兴趣,具有明显的话题相关性。该文从话题层面来分析用户的互动关系,提出了度量互动关系在话题上强弱度的方法,通过有效地融合互动关系的话题特征,最终提出了改进的微博推荐模型IBCF。实验结果表明,与现有的社会化推荐方法相比,该文提出的新方法在MAP和NDCG等指标上取得了更好的推荐效果,而且为推荐结果提供了更明确的可解释性。 In contrast to the existing social relationship based micorblog recommendation,this paper analyzes the top- ic level of user interaction,and proposes a new method to measure the strength of this relationship. We infer the top- ic of the interaction relationship,and propose IBCF as an improved microblog recommendation model. Experimental results show that, compared with the current popular social recommendation methods, the proposed method performs better according to MAP and NDCG,generating more reasonable recommended results,
出处 《中文信息学报》 CSCD 北大核心 2016年第3期187-195,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金青年基金(61402466)
关键词 互动关系 互动话题 社会化推荐 协同过滤 微博推荐 interaction relationship, Interaction topic, social recommendation, collaborative filtering, microblog recom- mendation
  • 相关文献

参考文献17

  • 1Konstas I,Stathopoulos V,Jose J M. On social networks and collaborative recommendation[C]//Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval. ACM,2009: 195-202.
  • 2Ma H,Yang H,Lyu M R,et al. Sorec: social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM conference on information and knowledge management. ACM,2008: 931-940.
  • 3Jamali M,Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the 4th ACM conference on recommender systems. ACM,2010: 135-142.
  • 4Chen K,Chen T,Zheng G,et al. Collaborative personalized tweet recommendation[C]//Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval. ACM,2012: 661-670.
  • 5Sinha R R,Swearingen K. Comparing Recommendations Made by Online Systems and Friends[C]//Proceedings of DELOS workshop: personalisation and recommender systems in digital libraries. 2001: 106.
  • 6彭泽环,孙乐,韩先培,石贝.基于排序学习的微博用户推荐[J].中文信息学报,2013,27(4):96-102. 被引量:15
  • 7Pitsilis G,Marshall L F. A model of trust derivation from evidence for use in recommendation systems[M]. University of Newcastle upon Tyne,Computing Science,2004.
  • 8Pitsilis G,Marshall L. Trust as a key to improving recommendation systems[M]. Springer,2005.
  • 9O'Donovan J,Smyth B. Trust in recommender systems[C]//Proceedings of the 10th international conference on intelligent user interfaces. ACM,2005: 167-174.
  • 10Lathia N,Hailes S,Capra L. Trust-based collaborative filtering[M]//Trust Management II. Springer US,2008: 119-134.

二级参考文献11

  • 1Zhou T, Ma H, Lyu , M. , King, 1. UserRec: A User Recommendation Framework in Social Tagging Sys?tems[CJ/ /Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491.
  • 2Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on so?cial networking sites[CJI /Proceedings of CHIll: Proceedings of the 27th international conference on hu?man factors in computing systems ACM New York, 2009.
  • 3Hiroyuki Koga , Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Esti?mated Latent Topics], CJ/ /Proceedings of HCI (1) 2011: 461-470.
  • 4Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[CJ/ / Proceedings of RecSys08, 2008: 59-66.
  • 5Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[CJ/ /Proceedings of DELOS- NSF Workshop on Personalization and Rec?ommender Systems in Digital Libraries. 2001.
  • 6Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on so?cial relations[CJ/ /Proceedings of RecSys , 2009: 53- 60.
  • 7TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009.
  • 8K Dindia and D Canary. Definitions and Theoretical Perspectives on Maintaining Relationships.Journal of Social and Personal Relationships[J], 1993, 10 (2) : 163-173.
  • 9Malone T, Grant K, Turbak F, et al. Intelligent in?formation sharing systems]]]. Communications of the ACM , 1987, 30(5): 390-402.
  • 10J Hu, B Wang, Y Liu. Personalized Tag Recommen- dation Using Social Contacts[CJ/ /Proceedings of SRS VVorkshops. 2011.

共引文献14

同被引文献27

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部