期刊文献+

PAN/SWCNTs复合纳米纤维纱线的制备及其性能 被引量:6

Preparation and Properties of PAN/SWCNTs Composite Nanofiber Yarns
下载PDF
导出
摘要 采用改进的静电纺丝装置,分别制备了纯聚丙烯腈(PAN)纳米纤维纱线和不同单壁碳纳米管(SWCNTs)质量分数的PAN/SWCNTs复合纳米纤维纱线.利用扫描电子显微镜、透射电子显微镜、傅里叶红外-拉曼光谱仪和X射线多晶衍射仪分别对复合纳米纤维纱线进行了形貌和直径表征、分子结构分析、结晶结构分析,并测试了不同SWCNTs质量分数对复合纳米纤维纱线力学性能的影响.结果表明:不同SWCNTs质量分数的PAN/SWCNTs复合纳米纤维纱线均具有良好的形态且沿着纱线轴向有序排列;随着SWCNTs质量分数的增加,纱线和纤维的直径均呈现减小的趋势,并且纤维中的串珠增多;碳纳米管沿纤维轴向均匀分布;碳纳米管的加入没有产生新的特征峰,但PAN的峰值有所减弱或增强;碳纳米管的加入改变了PAN的结晶性能;当SWCNTs质量分数为5%时,复合纳米纤维纱线的拉伸强度达到最高值为24.25 MPa. Polyacrylonitrile/single-wall carbon nanotube(PAN/SWCNTs) composite nanofiber yarns with different mass fraction of SWCNTs were fabricated successfully by a modified electrospinning setup. The morphology, diameter, molecular structure and crystal structure of PAN/ SWCNTs composite nanofiber yarns were tested by SEM(scanning electron microscopy).TEM(transmission electron microscopy).FTIR (Fourier transform infrared spectroscopy) and XRD(X-ray diffraction), respectively. The effects of SWCNTs with different mass fraction on mechanical properties of PAN/ SWCNTs composite nanofiber yarns were also investigated. It is found that PAN/ SWCNTs composite nanofiber yarns show great morphology and are uniaxially aligned along the axial yarn. With the mass fraction of SWCNTs increasing, the diameters of the composite nanofibers and yarns reduce, but the quantity of beaded nanofibers increases. The SWCNTs distribute along the long axis of composite nanofiber. The addition of SWCNTs doesn't generate new characteristic peak, but weakens or enhances some peaks. Moreover, the addition of SWCNTs changes the crystallization of PAN. The tensile strength of the PAN/SWCNTs composite nanofiber yarns reachs the maximum value 24.25 MPa when the mass fraction of SWCNTs is 5%.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期313-317,331,共6页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(50973014 11172064) 教育部霍英东基金资助项目(121071) 上海市曙光计划资助项目(11SG33) 中央高校基本科研业务费专项资金资助项目 东华大学"励志计划"资助项目
关键词 静电纺 聚丙烯腈/单壁碳纳米管(PAN/SWCNTs)复合纳米纤维纱线 取向 拉伸强度 electrospinning polyacrylonitrile/single-wall carbon nanotube (PAN/ SWCNTs) composite nanofiber yarn alignment tensile strength
  • 相关文献

参考文献29

  • 1RENEKER D H, CHUN I. Nanometre diameter fibres of polymer produced by electrospinning EJ 1. Nanotechnology, 1996, 7(3) :216-223.
  • 2HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15) :2223-2253.
  • 3LI D, XIA Y N. Electrospinning of nanofibers: Reinventing the wheel[J]. Advanced Materials, 2004,16(14) : 1151-1170.
  • 4FANG Jian NIU HaiTao LIN Tong WANG XunGai.Applications of electrospun nanofibers[J].Chinese Science Bulletin,2008,53(15):2265-2286. 被引量:19
  • 5LIWJ, DANIELSON K G, AI.EXANDER P G, et al. Biological response of chondrocytes cultured in three dimensional nanofibrous poly (epsilon-caprolactone) scaffolds [J]. Journal of Biomedical Materials Research Part A, 2003, 67(4) : 1105-1114.
  • 6GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers [ J ]. Colloid and Surfaces A Physicochem and Engineering Aspects, 2001, 187/188:469-481.
  • 7VERRECK G, CHUN I, ROSENBLATT J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer[J]. Journal of Controlled Release, 2003, 92 (3) : 349 -360.
  • 8CHAUREY V, BLOCK F, SU Y H, et al. Nanofiber size dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment [J]. Acta Bimnaterialia, 2012, 8(11) :3982-3990.
  • 9LI X S, YAO C, SUN FQ,et al. Conjugate electrospinning of continuous nanofiber yarn of poly ( L lactide)/nanotricalcium phosphate nanocomposite E J ]. Journal of Applied Polymer Science,2008,107(6) :3756-3764.
  • 10SMIT E, BUTTNER U, SANDERSON R D. Continuous yarns fromelectrospun fibers[J]. Polymer, 2005, 46(8) :2419- 2423.

二级参考文献50

  • 1郭鹤铜 张三元.复合镀层[M].天津:天津大学出版社,1991..
  • 2[1]Young Hee Lee,Seong Gon Kim,Dav id Tomanek.Сatalytic growth of single-wa ll carbon nanotubes[J].Phys Rev Lett,199 7,78:2393.
  • 3[2]Falvo M R,Clary G J,Taylor R M, et al. Bending and buckling of carbon nanotubes under large strain[J].Nature,1997,389:5 82.
  • 4[3]Berber S,Kwon Young-Kyum,Tomane k D.Unusually high thermal conductivity of carbon nanotubes[J].Phys Rev Lett, 2000,84:4613.
  • 5[4]Pauson S,Helser A,Buongiorno N M.Tunable resistance of a carbon nanotube-graphite interface[J].Science, 2000,290:1744.
  • 6[5]Kwon Young-Kyum,Tomanek D.Orien tational melting in carbon nanotube rope s[J].Phys Rev Lett,2000,84:1483.
  • 7[6]Falvo M R,Clary G,Helser A.Nano manipulation experiments exploring frica tional and mechanical properties of carb on nanotubes[J].Microsc Micro anal,1999,4:504.
  • 8[7]Riichiro Saito,Gene Dresslhaus, Dresslhaus M S.Physical Properties of Ca rbon Nanotubes[M].London:Imperial Colleg e Press.
  • 9[8]Christian Schonenberger,Laszlo Forro.Physics of multiwall carbon nanotu bes[J].Phys World,2000,(4).
  • 10Xu C L,Carbon,1999年,37卷,855页

共引文献132

同被引文献29

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部