期刊文献+

基于核的两阶段稀疏表示的人脸识别研究 被引量:1

Research on Face Recognition with a Kernel-Based Two-Phase Sparse Representation Method
下载PDF
导出
摘要 为了提高人脸识别的分类正确率,提出了一种基于核的两阶段稀疏表示(KBTPSR)的人脸识别方法。该方法首先利用一个非线性函数将原始数据空间映射到特征空间;然后,在该特征空间中将待测样本表示为所有训练样本的一个线性组合,接下来根据每个训练样本的表示贡献选出待测样本的M个最近邻;最后,将待测样本表示为上述M个最近邻的一个线性组合并且利用每一类训练样本对待测样本的表示贡献来完成分类。大量的实验结果表明,该方法可以获得很好的识别效果。 A kernel-based two-phase sparse representation(KBTPSR) method is proposed to improve the classification accuracy of face recognition.Firstly,the proposed method exploits a non-linear function to map raw data space to feature space.Then,the testing sample is represented as a linear combination of all the training samples in the feature space,and M nearest neighbors of the testing sample is selected according to the representation contribution of each training sample.Finally,the testing sample is represented as a linear combination of the selected M nearest neighbors and exploits the representation contribution of every class to perform classification.A large number of experimental results show that the proposed method can obtain good recognition effect.
出处 《测控技术》 CSCD 2016年第8期20-24,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61261011 41374039)
关键词 人脸识别 基于核的两阶段稀疏表示 非线性函数 特征空间 表示贡献 face recognition kernel-based two-phase sparse representation non-linear function feature space representation contribution
  • 相关文献

参考文献14

  • 1Zhu N B, Li S T. A keme|-based sparse representation meth- od for face recognition [ J ]. Neural Comput & Applic, 2014 (24) :845 - 852.
  • 2周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 3汪淑贤,熊承义,高志荣,周城,侯建华.分块最大相似性嵌入稀疏编码的人脸识别[J].模式识别与人工智能,2014,27(10):954-960. 被引量:8
  • 4Turk M, Pentlend A. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs.Fisherfaces:recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 1997,19 ( 17 ) :711 - 720.
  • 6Scholkopf B, Smola A, Muller K R. Nonlinear component a- nalysis as a kernel eigenvalue problem[ J]. Neural Computa- tion, 1998,10(5) : 1299 - 1319.
  • 7Yang M H. Kernel eigenfaces vs. kernel Fisherfaces: face recognition using kernel methods [ C ]//Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition. 2002:215 - 220.
  • 8Cover T, Hart P. Nearest neighbor patten classification [ J ], IEEE Transactions on Information Theory, 1967,13 ( 1 ) :21 - 27.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis Machine Intelligence,2009,31 (2) : 210 - 227.
  • 10Shi Q F,Eriksson A,Van den Hengel A, et al. Is face rec- ognition really a compressive sensing problem? [ C ]// IEEE Conference on Computer Vision and Pattern Recogni- tion. 2011:553 - 560.

二级参考文献34

  • 1Sung K,IEEE Trans PAMI,1998年,20卷,39页
  • 2Dai Y,Pattern Recognition,1998年,31卷,159页
  • 3Peng H,D Electronics Letters,1997年,33卷,283页
  • 4Zhang J,IEEE Proc,1997年,85卷,1423页
  • 5Lin S,IEEE Trans Neural Networks,1997年,8卷,114页
  • 6Ydeng J,Pattern Recognition,1997年,30卷,403页
  • 7Swets D L,IEEE Trans PAMI,1996年,18卷,831页
  • 8Roder N,Patter Recognition,1996年,29卷,143页
  • 9Lin C C,Pattern Recognition,1996年,29卷,2079页
  • 10Jia X,IEEE Trans PAMI,1995年,17卷,1167页

共引文献162

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部