期刊文献+

氧化石墨烯对LiMn_(0.7)Fe_(0.3)PO_4的复合改性

Compound modification of LiMn_(0.7)Fe_(0.3)PO_4 with graphene oxide
原文传递
导出
摘要 为提高LiMn_(0.7)Fe_(0.3)PO_4(LMFP)的电化学性能,首先,采用溶剂热法将氧化石墨烯(GO)与LMFP复合,合成了GO/LMFP复合材料;然后,利用XRD和电感耦合等离子体(ICP)对所得样品的结构和元素进行分析,利用SEM对样品的形貌进行表征,利用电池充放电测试系统和电化学工作站对其进行电化学性能测试。结果表明:所得GO/LMFP复合材料呈现单相橄榄石结构;粒径在200nm左右,且分布较均匀。经GO改性后的复合材料在0.2C、0.5C、1.0C、5.0C和10.0C倍率下的首次放电比容量分别为157.9、148.1、142.0、122.3、87.3mAh·g-1,与C/LMFP复合材料相比,分别提高了5.9%、4.7%、7.0%、24.3%和66.6%。所得结论表明GO的加入有效提高了材料的电子电导率和电化学活性,且与无定型碳共同作用,活性物质的有效利用率提高,GO/LMFP复合材料的循环稳定性也得到改善。 In order to improve the electrochemical performance of LiMn0.7Fe0.3PO4(LMFP),the graphene oxide(GO)/LMFP composites were synthesized using solvothermal method by compound of GO and LMFP firstly.Then,structure and elements of the samples obtained were analyzed by XRD and inductively coupled plasma(ICP),the morphologies of samples were characterized by SEM,and the tests for electrochemical performances were conducted by program-controlled battery test system and electrochemical workstation.The results show that the GO/LMFP composites obtained are uniphase olivine structure,the particle size is about 200 nm and the distribution is relatively uniform.The initial discharge specific capacities of composite after the modification of GO were 157.9,148.1,142.0,122.3,87.3mAh·g-1 at rates of 0.2C,0.5C,1.0C,5.0Cand 10.0Crespectively,which increases 5.9%,4.7%,7.0%,24.3%and 66.6%respectively compared with C/LMFP composite.The conclusions obtained show that the adding of GO improves the electronic conductivity and electrochemical activity of the material effectively,and synergistically effects on amorphous carbon,the effective utilization rate of active material increases,and the cycle stability of GO/LMFP composite improve.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2016年第8期1762-1768,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(51203041) 河北省教育厅高校科学技术研究重点项目(ZH2012026)
关键词 LiMn0.7Fe0.3PO4 氧化石墨烯 溶剂热法 复合材料 碳包覆 LiMn0.7Fe0.3PO4 graphene oxide solvothermal method composite carbon-coating
  • 相关文献

参考文献22

  • 1PADHI A K,NANJUNDASWAMY K S,GOODENOUGH J B.Phopho-olivines as positive-electrode materials for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1997,144(4): 1188-1194.
  • 2邓凌峰,余开明,严忠,彭辉艳.Co^(2+)掺杂石墨烯/LiFePO_4锂离子电池复合正极材料的制备与表征[J].复合材料学报,2015,32(5):1390-1398. 被引量:11
  • 3LU Q,HUTCHINGS G S,ZHOU Y,et al.Nanostructured flexible Mg-modified LiMnPO4 matrix as high-rate cathode materials for Li-ion batteries[J].Journal of Materials Chemistry A,2014,2(18): 6368-6373.
  • 4DONG Y Z,WANG L,ZHANG S L,et al.Two-phase interface in LiMnPO4 nanoplates[J].Journal of Power Sources,2012,215(1): 116-121.
  • 5CHOI D,WANG D,BAE I T,et al.LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode[J].Nano Letters,2010,10(8): 2799-2805.
  • 6RAMAR V,BALAYA P.Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping[J].Physical Chemistry Chemical Physics,2013,15(40): 17240-17249.
  • 7YANG G,NI H,LIU H,et al.The doping effect on the crystal structure and electrochemical properties of LiMnx M1-x PO4 (M=Mg,V,Fe,Co,Gd)[J].Journal of Power Sources,2011,196(10): 4747-4755.
  • 8WANG K,WANG Y,WANG C,et al.Graphene oxide assisted solvothermal synthesis of LiMnPO4 naonplates cathode materials for lithium ion batteries[J].Electrochimica Acta,2014,146: 8-14.
  • 9LIU T,WU B,WU X.Realizing Fe substitution through diffusion in preparing LiMn1-x FexPO4/C cathode materials from MnPO4·H2O[J].Solid State Ionics,2014,254: 72-77.
  • 10SHAN L,FANG H,DAI E,et al.Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries[J].Electrochimica Acta,2014,116: 97-102.

二级参考文献57

  • 1邹艳红,吴婧,刘洪波,陈宗璋.聚苯胺/氧化石墨的合成及其在DNA识别上的应用[J].新型炭材料,2005,20(4):360-364. 被引量:18
  • 2PADHI A K, ANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for re- ehargeable lithium batteries [J]. J Eleetroehem Soe, 1997, 144(4) : 1188-1194.
  • 3YI Huihua, HU Chenglin, FANG Haisheng, et al. Opti- mized electrochemical Metals performance of LiMn0. 9 Fe0.1-x" MgPO4/C for lithium batteries [J]. Electroehim Acta, 2011,56: 4052-4057.
  • 4YANG Gang, NI Huan, LIU Haidong, et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4(M=Mg,V, Fe, Co, Gd) [J]. J Power Sources, 2011,196: 4747-4755.
  • 5LIU Shan, FANG Haisheng, YANG Bin, et al. Improving rate performance of LiMnPO4 based material by forming elec- tron-conducting iron phosphides [J]. J Power Sources, 2013, 230:267-270.
  • 6CHANG Xiaoyan, WANG Zhixing, LI Xinhai, et al. Syn- thesis and performance of LiMn0. 7 Fe0. a PO4 cathode material for lithium ion batteries[J]. Mater Res Bull, 2005, 40: 1513-1520.
  • 7SUA Jing, WEI Bingqing, RONG Jiepeng, et al. A general solution-chemistry route to the synthesis LiMPO4 (M= Mn, Fe and Co)nano crystals with [010] orientation for lithium ion batteries [J]. Solid State Chem, 2011, 184: 2909-2919.
  • 8MOLENDAA J, OJCZYKA W, CZEK K SWIER,et al. Dif- fusional mechanism of de-intercalation in LiFel-y Mny VO4 cathode material[J]. Solid State Ionics, 2006, 177: 2617- 2624.
  • 9Wizenta Nadja, Behra Gunter, Ferdin Lipps, et al. Single- crystal growth of LiMnPO4 by the floating-zone method [J]. J Cryst Growth, 2009, 311: 1273-1277.
  • 10MARTHA S K, MARKOVSKY B. LiMnPO4 as an advanced cathode material for rechargeable lithium batteries [ J ]. J Electrochem Soc, 2009,156(7): A541-A552.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部