摘要
针对在异常突发事件下交通流会呈现的不同特性进行研究,以期实现在突发事件下的城市道路短期交通流精准预测。引入基于跳转的ARIMA模型来对突发事件下的交通流变化规律进行描述,在路网正常情况下和路网堵塞情况下,仿真算例表明,预测模型可以较好地进行道路区域网络交流注预测。
In order to obtain urban trafficflow accurate predict ion, different characteristics of trafficflow under abnormal state need to be studied. Considering the difference characters of the turning proportion matrix betweencongestion case and discongestion case, a switching autoregressive integrated moving average (ARIMA) model is proposed and employed to explore how traff ic flow varies with time, the simulation results show that the proposed approach is appl icable and effective.
出处
《科学技术与工程》
北大核心
2016年第23期75-78,共4页
Science Technology and Engineering
基金
北斗卫星定位的城市交通智能感知与拥堵控制研究
本部校内专项(11102611301)资助
关键词
交通流预测
交通流特征
异常突发事件
traf ficflow forecasting traffic flow characteristic abnormal states