期刊文献+

1T’-MoTe_2原位生长关键工艺技术

Key Technology of 1T'-MoTe_2 In-Situ Growth
下载PDF
导出
摘要 二元过渡金属硫族化合物碲化钼(MoTe_2),由于其室温下合适的禁带宽度和较高的理论迁移率,将作为沟道材料应用于下一代集成电路器件中,而受到普遍的关注。通过碲(Te)和钼(Mo)的原位固相反应,在真空环境中不同温度条件下退火得到1T’-MoTe_2薄膜。利用喇曼光谱、X射线光电子能谱分析以及椭圆偏振光谱化对制备的MoTe_2薄膜进行表征分析,研究了不同退火温度对MoTe_2薄膜质量的影响。实验表明,在450℃退火条件下,薄膜喇曼峰强高,半峰宽较窄,结晶质量良好。但是,由于高温下单质和化合态Te的再蒸发效应,当退火温度从450℃上升到600℃时,薄膜喇曼峰强明显减小且半峰宽变宽,结晶质量显著变差。 Because of a higher theoretical mobility and an appropriate band gap at room temperature,binary transition metal dichalcogenide molybdenum ditelluride( MoTe_2) has attracted widespread attention,as it is an excellent candidate for the channel material in next-generation integrated circuit devices. By in-situ solid state reaction of Te and Mo,1T'-MoTe_2 thin films were fabricated at different annealing temperatures in vacuum. The MoTe_2 thin film was investigated by Raman spectra,X-ray photoelectron spectroscopy analysis and spectroscopic ellipsometry. And the effects of different annealing temperatures on the quality of MoTe_2 thin films were studied. The results show that at the annealing temperature of 450 ℃,the Raman intensity is strong and FWHM is narrow,and the crystal quality of the film is good. However,when the annealing temperature increases from 450 ℃ to 600 ℃,due to the largely enhanced reevaporation effect both in elemental and chemical state of Te,the crystal quality of the films deteriorates,as the Raman intensity becomes weakened and FWHM becomes broader.
出处 《半导体技术》 CAS CSCD 北大核心 2016年第8期625-630,共6页 Semiconductor Technology
基金 国家自然科学基金面上项目(61376092)
关键词 二元过渡金属硫族化合物(TMD) 1T’-碲化钼(1T’-Mo Te2) 原位生长 薄膜合成 再蒸发效应 binary transition metal dichalcogenide(TMD) 1T'-molybdenum ditelluride(1T'MoTe_2) in-situ growth synthesis of thin film reevaporation effect
  • 相关文献

参考文献25

  • 1RADISAVLJEVIC B, RADENOVIC A, BRIV10 J, et al. Single-layer MoS2 transistors [ J]. Nature Nanotech- nology, 2011, 6 (3): 147-150.
  • 2CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nature Chemistry, 2013, 5 (4): 263-275.
  • 3ZANDT T, DWELK H, MANZKE R, et al. Quadratic temperature dependence up to 50 K of the resistivity of metallic MoS2 [ J]. Journal of Alloys and Compounds, 2007, 442 (1/2): 216-218.
  • 4Wenxu Zhang Zhishuo Huang Wanli Zhang Yanrong Li.Two-dimensional semiconductors with possible high room temperature mobility[J].Nano Research,2014,7(12):1731-1737. 被引量:32
  • 5CHEOL P J, JOON Y S, HYUN K, et al. Phase-engi- neered synthesis of centimeter-scale 1T'-and 2H-molybde- num ditelluride thin films [J]. Acs Nano, 2015, 9 (6) : 6548-6554.
  • 6HAN L, NEAL A T, YE P D. Channel length scaling of MoS2 MOSFETs [J]. Acs Nano, 2012, 6 (10): 8563-8569.
  • 7PRADHAN N R, RHODES D, FENG S, et al. Field- effect transistors based on few-layered c-MoTe2 [ J ]. AcsNano, 2014, 8 (6): 5911-5920.
  • 8FATHIPOUR S, MA N, HWANG W S, et al. Exfoliated muhilayer MoTe2 field-effect transistors [ J ]. Applied Physics Letters, 2014, 105 (19): 192101-1- 192101-3.
  • 9CHEN B, SAHIN H, SUSLU A, et al. Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction [ J]. Acs Nano, 2015, 9 (5): 5326-5332.
  • 10DONG H K, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinic MoTe2 [ J]. Nature Physics, 2015, 11 (6): 482-486.

二级参考文献21

  • 1Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
  • 2Das Sarma, S.; Adam, S.; Hwang, E. H.; Ross, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys.2011, Si, 407.
  • 3Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. Highspeed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305-308.
  • 4Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563-8569.
  • 5Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.
  • 6Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.
  • 7Popov, I.; Seifert, G.; Tomanek. D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.
  • 8Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon- limited mobility in n-type single layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.
  • 9Li, X. D.; Mullen, J. T.; Jin, Z.; Borysenko, K. M.; Nardelli, M. B.; Kim, K.W. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 2013, 87, 115418.
  • 10Kaasbjerg, K.; Thygesen, K. S.; Jauho, A. P. Acoustic phonon limited mobility in twodimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 2013, 87, 235312.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部