期刊文献+

炎性小体中ASC斑点形成机理及调控机制 被引量:6

Advances in formation and regulation of ASC-speck in inflammasome activation-A review
原文传递
导出
摘要 在一系列微生物感染及内外源性刺激物的作用下,细胞质中多种蛋白复合物组装成炎性小体,其主要功能是活化半胱天冬酶-1,引起一系列促炎细胞因子的分泌和半胱天冬酶-1依赖性的细胞死亡。凋亡相关斑点样蛋白(ASC)是炎性小体中连接胞浆内受体和半胱天冬酶-1的接头蛋白,在炎性小体活化中ASC聚集成大分子的二聚体,被称为ASC斑点(ASC-speck)。ASC斑点的形成对半胱天冬酶-1的活化至关重要,调控ASC斑点的形成是炎性小体相关疾病的治疗和预防的新途径。本文从ASC斑点形成的分子机理,以及磷酸化、泛素化和去泛素化、离子通道等方面,对近年来ASC斑点的调控机制相关的研究进展进行综合评述,总结了ASC斑点的形成机理及主要调控机制,最后结合作者相关研究成果和观点对该领域的研究前景进行了展望。 Under the effects of a series of microbial infection and endogenous or exogenous stimuli, inflammasomes are assembled as multiple protein complexes in the cytoplasm, which mainly contain pattern recognition receptors (PRRs), apoptosis-associated speck-like protein containing a CARD (ASC), and pro-caspase-1. The inflammasomes are the platform for caspase-1 activation and subsequent proinflammatory cytokines secretion, and caspase-1 dependent cell death as well. As a key adaptor protein, ASC concatenates PRRs and pro-caspase-1 in the cytoplasm. During inflammasome activation, ASC molecules assemble into large molecule dimers, which is called ASC-speck. The formation of ASC-speck is critical for caspase-1 activation, and ASC-speck becomes a target for the therapy and prevention of inflammatory diseases. In this review, advances in molecular mechanism of ASC-speck formation and the regulation systems for ASC-speck are summarized from the aspects of phosphorylation, ubiquitination and iron channels etc. Finally, the research prospects in this field are discussed.
出处 《微生物学报》 CAS CSCD 北大核心 2016年第9期1406-1414,共9页 Acta Microbiologica Sinica
基金 国家自然科学基金(31400762 81101222) 中央高校基本科研业务费专项(XDJK2015B002 SWU114032) 重庆市科委专项(cstc2015shmszx80010) 天津市自然科学基金(15JCYBJC49700)~~
关键词 炎性小体 ASC斑点 半胱天冬酶-1 半胱天冬酶募集结构域 inflammasome, ASC-speck, caspase-1, CARD
  • 相关文献

参考文献43

  • 1Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. International Review of Immunology, 2011, 30(1): 16-34.
  • 2Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell, 2014, 157(5): 1013-1022.
  • 3Cridland JA, Curley EZ, Wykes MN, Schroder K, Sweet M J, Roberts TL, Ragan MA, Kassahn KS, Stacey KJ. The mammalian PYHIN gene family: phylogeny, evolution and expression. BMCEvolutionary Biology, 2012, 12(1): 140.
  • 4Harton JA, Linhoff MW, Zhang JH, Ting JPY. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. The Journal of Immunology, 2002, 169(8): 40884093.
  • 5Lupfer C, Kanneganti TD. Unsolved mysteries in NLR biology. Frontiers in Immunology, 2013, 4: 285.
  • 6Man SM, Kanneganti TD. Regulation of inflammasome activation. ImmunologicalReviews, 2015, 265(1): 6-21.
  • 7Gross O, Thomas C J, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunological Reviews, 2011, 243(1): 136-151.
  • 8Tsuchiya K, Hara H. The inflammasome and its regulation. Critical Reviews in Immunology, 2014, 34(1): 41-80.
  • 9Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, Hidaka E, Katsuyama T, Higuchi T, Sagara J. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. The Journal of Biological Chemistry, 1999, 274(48): 33835-33838.
  • 10Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. The Journal of Immunology, 2009, 182(5): 3173-3182.

同被引文献59

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部