期刊文献+

成对比较数据和排序数据的处理:模型分析的方法 被引量:2

Paired-comparison and ranking data:a method of modeling analysis
下载PDF
导出
摘要 对近年来研究者所提出的瑟斯顿模型和BTL模型两大类模型进行综述,总结了目前研究者提出的2种数据分析和处理方法视角:多层线性模型(HLM)和结构方程模型(SEM).基于模型的方法不仅充分利用了成对比较和排序数据的信息,而且模型更具拓展性,如为考察协变量、潜类别等的影响提供可能,也为迫选测验等的开发提供指导意义.本文不涉及复杂的统计知识,运用心理学研究中被熟知的模型对处理成对比较数据和排序数据的模型及其模型估计进行说明,并通过Mplus软件示例,以期模型分析的方法在对成对比较数据和排序数据的处理上得到广泛的应用. Modeling of paired-comparison and ranking data plays an important role in measuring attitudes, preferences, and values. However, since model estimation is complex and requires special knowledge of statistics, model application analysis is restricted, information of items is lost. Thurstone and BTL models, two main models proposed in recent years, were reviewed. Two perspectives of data analysis were summed up. hierarchical linear model (HLM) and structural equation model (SEM). Model-based methods not only can make full use of data information, models can also he extended. Effects of covariates and latent class could be investigated, guidance for development of tests including forced choice test could be provided. Known models and model estimation were used to deal with paired comparison and ranking data, without involving sophisticated statistical knowledge. Mplus software examples are provided for further empirical studies. It is hoped that modeling analysis of paired comparison and ranking data can be widely used.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期525-531,共7页 Journal of Beijing Normal University(Natural Science)
基金 全国教育科学"十二五"规划教育部重点课题资助项目(GFA111001)
关键词 成对比较数据 排序数据 瑟斯顿模型 BTL模型 多层线性模型 结构方程模型 paired-comparison data ranking data Thurstone model BTL model hierarchical linearmodel structural equation model
  • 相关文献

参考文献42

  • 1McGuire D P, Davison M L. Testing group differences in paired comparisons data[J]. Psychological Bulietin,1991, 110(1): 171.
  • 2Maydeu-Olivares A, B~ckenholt U. Structural equation modeling of paired-comparison and ranking data [J]. Psychological Methods, 2005, 10(3) : 285.
  • 3Hatzinger R, Dittrich R. Prefmod: An R package for modeling preferences based on paired comparisons, rankings, or ratings[J]. Journal of Statistical Software, 2012, 48(10): 1.
  • 4Dillon W R, Kumar A, Borrero M S. Capturing individual differences in paired comparisons: an extended BTL model incorporating descriptor variables[J]. Journal of Marketing Research, 1993, 30(1): 42.
  • 5Moore R C. A formal theory of knowledge and action [R]. Sri International Menlo Park CA: Artificial Intelligence Center, 1984.
  • 6Cervone H K Applied digital library project management: using paired comparison analysis to determine relative importance [J]. OCLC Systems Services: International Digital Library Perspectives, 2009, 25(3): 162.
  • 7Liu Y, Zhao P. Calculating subjective weight coefficients for overall assessment by paired comparison and its application in education assessment [J/OL]. M D Forum. [ 2015-09-20 ]. http: // www. seiofbluemountain, com.
  • 8Lee J S, Goldmann L, Ebrahimi T. Paired comparison- based subjective quality assessment of stereoscopic images [J]. Multimedia Tools and Applications, 2013, 67 (1) :31.
  • 9Uchiyama T, Kitamura N, Watanabe A, et aL Quantification of negative aesthetic ratings in primary unrepaired unilateral cleft lip infants by modified paired comparison method [J].The Cleft Palate-Craniofacial Journal, 2014, 51(1):30.
  • 10Pascalis O, de Haan M, Nelson C A, et al. Long-term recognition memory for faces assessed by visual paired comparison in 3-and 6-month-old infants[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1998, 24(1): 249.

二级参考文献40

  • 1Bartram,D. The relationship between ipsatized and normative measures of personality[J].Journal of Occupational and Organizational Psychology,1996.25-39.
  • 2Bowen,C.C,Martin,B.A,Hunt,S.T. A comparison of ipsative and normative approaches for ability to control faking in personality questionnaires[J].International Journal of Organizational Analysis,2002,(03):240-259.
  • 3Brown,A,Maydeu-Olivares,A. Item response modeling of forced-choice questionnaires[J].Educational and Psychological Measurement,2011,(03):460-502.
  • 4Brown,A,Maydeu-Olivares,A. Fitting a Thurstonian IRT model to forced-choice data using Mplus[J].Behavior Research Methods,2012,(04):1135-1147.
  • 5Brown,A,Maydeu-Olivares,A. How IRT can solve problems of ipsative data in forced-choice questionnaires[J].Psychological Methods,2013,(01):36-52.
  • 6Cattell,R.B. Psychological measurement:Normative,ipsative,interactive[J].Psychological Review,1944,(05):292-303.
  • 7Chan,W. Analyzing ipsative data in psychological research[J].Behaviormetrika,2003,(01):99-121.
  • 8Chan,W,Bentler,P.M. Covariance structure analysis of ordinal ipsative data[J].Psychometrika,1998,(04):369-399.
  • 9Chemyshenko,O.S,Stark,S,Prewett,M.S,Gray,A.A Stilson,F.R & Tuttle,M.D. Normative scoring of multidimensional pairwise preference personality scales using 1RT:Empirical comparisons with other formats[J].Human Performance,2009,(02):105-127.
  • 10Cheung,M.W,Chan,W. Reducing uniform response bias with ipsative measurement in multiple-group confirmatory factor analysis[J].Structural Equation Modeling,2002,(01):55-77.

共引文献8

同被引文献193

引证文献2

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部