期刊文献+

Navier-Stokes方程最优控制问题的一种非协调有限元局部稳定化方法 被引量:2

A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations
下载PDF
导出
摘要 基于局部Gauss积分和梯形外推公式,速度/压力空间采用最低等阶非协调元NCP1-P1逼近,针对非定常Navier-Stokes方程最优控制问题,建立了一种全离散的非协调有限元局部稳定化格式.该格式绕开了inf-sup条件的束缚,且在每一时间步上,只需要做线性计算,减少了计算量.证明了该格式是无条件稳定的,给出了详细的误差分析.误差结果表明,该线性格式在时间上具有二阶精度. For the optimal control of N avier-Stokes equations,a new local stabilized nonconforming finite element method was proposed.The time-dependent problem was fully discretized with lowest-equal-order nonconforming finite element NCP_1-P_1 in the velocity and pressure spaces and the reduced Crank-Nicolson scheme in the time domain.The scheme was stable for the equal-order combination of discrete velocity and pressure spaces through the addition of a local L-2 projection term.Specially,based on an extrapolation formula,the method requires only the solution of one linear system per time step.Stability of the method was proved.For the state,adjoint state and control variables,the a priori error estimates were obtained.The error estimation results show that the method has 2nd-order accuracy.
出处 《应用数学和力学》 CSCD 北大核心 2016年第8期842-855,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11271273) 四川省教育厅自然科学基金(16ZB0300 14ZA0244)~~
关键词 NAVIER-STOKES方程 最优控制 稳定化方法 外推公式 Navier-Stokes equation optimal control stabilized method extrapolation formula
  • 相关文献

参考文献4

二级参考文献73

  • 1罗鲲,冯民富,王成.一个精确的免闭锁四边形板元[J].四川大学学报(工程科学版),2006,38(1):44-48. 被引量:1
  • 2王丽娟,何培杰.SECOND-ORDER OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY 3-DIMENSIONAL NEVIER-STOKES EQUATIONS[J].Acta Mathematica Scientia,2006,26(4):729-734. 被引量:5
  • 3WACHSMUTH D. Sufficient second-order optimality conditions for convex control constraints[J]. J Math Anal Appl, 2006,319:228 -247.
  • 4DELOS REYES J C, KUNISCH K. A semi-smooth Newton method for control constrained boundary optimal control of the Navier-stokes equations[J]. Nonlinear Analysis, 2005,62(7): 1289-1316.
  • 5FURSIKOV A, GUNZBURGER M, HOU L. Boundary value problems and optimal boundary control for the Navier-Stokes system :The two-dimensional case[J]. SIAM J Control Optim, 1998, 36(3):852-894.
  • 6FATTORINI H O, SRITHARAN S S. Necessarsy and sufficient conditions for optimal controls in viscous flow problems[J]. Proceedings of the Royal Society of Edinburgh, 1994, 124A(2):211-251.
  • 7FATTORI H O, SRITHARAN S S. Optimal chattering control for viscous flows[J]. Nonlinear Analysis, 1995,25(8): 763-797.
  • 8FATTORINI H O, SRITHARAN S S. Existence of optimal control for viscous flow problems[J]. Proceedings: Mathematical and Physical Sciences, 1992,439:81 -102.
  • 9SRITHARAN S S.Dynamic programming of the Navier- Stokes equations[J]. System & Control Letters, 1991,16(4): 299-307.
  • 10GUNZBURGER M, HOU L, SVOBODNY T. Boundary velocity control of incompressible flow with an application to viscous darg reduction [J]. SIAM J Control Optim, 1992,30(1):167-181.

共引文献15

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部