摘要
基于局部Gauss积分和梯形外推公式,速度/压力空间采用最低等阶非协调元NCP1-P1逼近,针对非定常Navier-Stokes方程最优控制问题,建立了一种全离散的非协调有限元局部稳定化格式.该格式绕开了inf-sup条件的束缚,且在每一时间步上,只需要做线性计算,减少了计算量.证明了该格式是无条件稳定的,给出了详细的误差分析.误差结果表明,该线性格式在时间上具有二阶精度.
For the optimal control of N avier-Stokes equations,a new local stabilized nonconforming finite element method was proposed.The time-dependent problem was fully discretized with lowest-equal-order nonconforming finite element NCP_1-P_1 in the velocity and pressure spaces and the reduced Crank-Nicolson scheme in the time domain.The scheme was stable for the equal-order combination of discrete velocity and pressure spaces through the addition of a local L-2 projection term.Specially,based on an extrapolation formula,the method requires only the solution of one linear system per time step.Stability of the method was proved.For the state,adjoint state and control variables,the a priori error estimates were obtained.The error estimation results show that the method has 2nd-order accuracy.
出处
《应用数学和力学》
CSCD
北大核心
2016年第8期842-855,共14页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11271273)
四川省教育厅自然科学基金(16ZB0300
14ZA0244)~~