期刊文献+

高并发数据库访问性能测试与制约因素分析 被引量:2

Performance test of database access and analysis of restraining factors with high concurrency
下载PDF
导出
摘要 网上订票、在线购物等服务是一类典型的基于数据库的高并发访问应用。高并发带来的系统性能瓶颈为这类应用的扩展带来了极大挑战,影响了用户体验。从客户端发出请求到服务端产生响应,中间涉及并发访问量、原始数据集和查询结果集大小、内存容量、不同软件性能以及CPU利用率等诸多因素影响系统整体性能。针对这些影响因素给出充分的分析和广泛的实验,以挖掘可提高整体系统性能的因素,为新型高效系统的建设提供依据。 The services of online booking and online shopping are typical high concurrent applications based on database. And the system's performance bottleneck which results from high concurrency brings great challenges to the extension of these applications and it also affects user experience. From the client which sends a request to the server which returns the response, it involves many factors such as the number of concurrent access, raw data set, result set, the memory, the performance of different softwares and CPU utilization, of which any factor will affect the overall system performance. Aiming at the factors, full analysis and extensive experiments are presented to mine the factor of improving the overall system performance, and it also provides basis for building a new efficient system.
作者 杨振灵
出处 《大众科技》 2016年第6期7-10,共4页 Popular Science & Technology
基金 国家自然科学基金(61362021) 广西自然科学基金(2013GXNSFDA019030 2014GXNSFDA118035) 广西科技创新能力与条件建设计划(桂科能1598025-21) 桂林科技开发项目(20150103-6) 桂林电子科技大学研究生教育创新计划资助项目(YJCXS201516)
关键词 高并发 数据库 性能瓶颈 用户体验 High concurrency database performance bottleneck user experience
  • 相关文献

参考文献7

二级参考文献132

  • 1戴亮,方晓勤,李丽.一种新的基于序列化的Java RMI方法[J].计算机工程,2006,32(22):99-101. 被引量:4
  • 2方巍,孙涌,崔志明.J2EE数据持久层的应用研究[J].计算机技术与发展,2007,17(2):68-71. 被引量:6
  • 3[1]IBM Websphere Application Server White Paper: WebSphere Application Server Development Best Practices for Performance and Scalability. 2000
  • 4[2]Bulka D. Java Performance and Scalability Volume 1:Server-side Programming Techniques. Addison Wesley, 2000
  • 5[3]Haggar P. Practical Java Programming Language Guide (First Printing). Addison Wesley, 2000-01
  • 6[4]Wilson S, Kesselman J. Java Platform Performance Strategies and Tactics. Addison Wesley, 2000
  • 7[5]Halter S L, Munroe S J. Enterprise Java Perfor- mance. Prentice Hall PTR, 2000
  • 8[6]Sucharitakul A. http:/developer.java.sun.com/ developer/technical Articles/ebeans/sevenrules/
  • 9Chen K, Zheng WM. Cloud computing: System instances and current research. Journal of Software, 2009,20(5):1337-1348 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3493.htm [doi: 10.3724/SP.J.1001.2009.03493].
  • 10Dash D, Kantere V, Ailamaki A. An economic model for self-tuned cloud caching. In: Ioannidis YE, Lee DL, Ng RT, eds. Proc. of the 25th Int'l Conf. on Data Engineering (ICDE 2009). New York: IEEE Computer Society Press, 2009. 1687-1693. [dol: 10.1109/ ICDE.2009.143 ].

共引文献182

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部