期刊文献+

一类肺结核传染病模型的分析

Analysis of a Tuberculosis Epidemic Model
下载PDF
导出
摘要 建立了一类4-维肺结核传染病模型。首先,根据第二代矩阵理论我们得到了系统的基本再生数。其次,利用Lyapunov方法证明了当R0≤1时,系统的无病平衡点是全局稳定的。然后,利用Routh-Hurwitz判据证明了当R0>1时系统的地方病平衡点是局部稳定的。此外,在不考虑因病死亡的情况下,利用广义的Bendixson-Dulac定理,证明了地方病平衡点是全局渐近稳定的。最后,我们对数学结果做了生物解释。 In this paper,a 4- dimension tuberculosis epidemic model was constructed. Firstly,according to the next generation theory,the basic reproduction number were obtained. Secondly,by using of Lyapunov method,we proved that the disease- free equilibrium of the system is globally stable when R 0≤1. Thirdly,by using of Routh- Hurwitz criterion,we got that the endemic equilibrium of the system is locally stable when R 0 1. In addition,without considering the disease- related death rate,we also got the global stability of the endemic equilibrium by using Bendixson- Dulac theorem. Finally,we presented some biological interpretation for the mathematical results.
作者 杜娟 边丽峰
出处 《运城学院学报》 2016年第3期5-9,共5页 Journal of Yuncheng University
基金 国家自然科学基金(11501498)
关键词 肺结核 基本再生数 稳定性 Tuberculosis Basic reproductive number Stability
  • 相关文献

参考文献7

  • 1世界卫生组织.全球结核病控制:监督,规划,融资[R].世卫组织的报告,2008.
  • 2Blower S, Mclean A R, Porco T C, et al. The intrinsic transmission dynamics of tuberculosis epidemics [J]. Nature Medicine, 1995, 1(8).
  • 3Raimundo S M. Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment [J]. Mathematical Biosciences & Engineering,2014,11 (4).
  • 4Lillebaek T, Andersen A B, Dirksen A, et al. Persistent high incidence of tuberculosis in immigrants in a low - incidence country [J]. Emerging Infectious Diseases, 2002,8 (7).
  • 5Gomes M G, Franco A O, Gomes M C, et al. Medley GF (2004) The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy[J]. Proceedings of the Royal Society B Biological Sciences ,2004,271 (1539).
  • 6Song B, CastiUo - Chavez C, Aparicio J P. Global Dynamics of Tuberculosis Models with Density Dependent Demography [M]. Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. Springer New York, 2002.
  • 7Busenberg S, Driessche P V D. Analysis of a disease transmission model in a population with varying size [J]. Journal of Mathematical Biology, 1990,28 ( 3 ).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部