期刊文献+

稳定生物发光金葡菌临床株假体周围关节感染动物模型的构建 被引量:5

Animal model of periprosthetic joint infection established by stably luminescent staphylococcus aureus clinical strains
原文传递
导出
摘要 目的建立稳定型生物发光临床株金黄色葡萄球菌假体周围关节感染(PJI)动物模型并探讨其可行性及应用价值。方法应用噬菌体Phi11侵染带Lux发光基因的标准菌株BD1652,并通过噬菌体转导将Lux基因导入PJI临床菌株金葡菌ST1792基因组DNA,进而构建成稳定型生物发光临床菌株ST1792-Lux。通过抽纸牌,将10只健康BALB/c小鼠随机均分为实验组和对照组,使用克氏针作为两组模型动物的左膝关节假体。术中实验组左膝关节内注入10μl(105CFU)ST1792-Lux菌液,对照组注入等量0.9%氯化钠溶液,术后1、3、7、14 d,采用活体成像系统(IVIS)检测生物发光强度随时间变化;并于术后2周观察小鼠左膝关节病理学变化。以非配对t检验对ST1792-Lux和ST1792的生物膜形成能力和同一时间点实验组与对照组小鼠左膝平均生物发光强度进行比较分析。结果经临床株筛选,噬菌体Phi11转导获得生物发光菌株"ST1792-Lux",无抗生素筛选条件下连续传代培养48 h,ST1792-Lux稳定发光;Lux基因重组于ST1792基因组DNA内,较之野生株ST1792,ST1792-Lux在生长能力和不同培养条件下成膜能力(tTSB=1.16,1.29;tTSBG=0.38,0.31;P均>0.05)方面差异无统计学意义。IVIS检测示,术后每个时间点(1、3、7和14 d),实验组较对照组的左膝平均生物发光强度均明显增高(t=9.13,10.72,14.48,7.46;P均<0.05)。结论本研究成功建立了稳定生物发光临床株S.aureus PJI动物模型,其稳定性高、重复性好,可用于临床株S.aureus PJI的致病分子机制和各种干预措施有效性的体内研究。 Objective To establish an animal model of periprosthetic joint infection( PJI) with stable luminescent staphylococcus aureus( S. aureus) clinical strains and evaluate its application. Methods After phage Phi11 infected the standard bacterial strain BD1652 carrying Lux gene,the Lux gene was transferred to S. aureus clinical strains ST1792 from BD1652 by phage transduction,and then the stable luminescent S. aureus clinical strains ST1792-lux were obtained. Ten BALB / c healthy mice were evenly divided into experimental group and control group. Kirschner wires were used as left knee prosthesises.During the operation,ST1792-Lux( 105CFU) in 10 μl of medium was inoculated into the cavity of the left knee in the experimental group,instead of the same volume of saline in the control group. The bacterial photon intensity in vivo was sequentially measured by in vivo imaging system( IVIS) on days 1,3,7 and14 after the operation. The pathological examinations of left knee were determined in the second week after the surgery. Student's t test was used to analyze the biofilm formation ability of ST1792-Lux and ST1792 and the mean bacterial photon intensity in the left knee between the experimental group and the control group at same time after the surgery. Results The luminescent S. aureus clinical strains ST1792-Lux was achieved by Phi11 phage transduction. In the absence of antibiotics,luminescence of ST1792-Lux was stable in vitro after continuous subculture over 48 hours. The lux gene was integrated into the bacterial chromosome,and ST1792-Lux did not display growth and biofilm formation defects in vitro. Compared with the control group,the mean bacterial photon intensity in left knee were significantly increased on day 1,3,7 and 14 after the surgery in the experimental group( t = 9. 13,10. 72,14. 48,7. 46; all P〈0. 05).Conclusion The study has successfully established an animal model of PJI with stable luminescent S.aureus clinical strains and the model shows advantages of high stability and good repeatability which could be used to explore the pathogenic molecular mechanism of PJI caused by clinical strains S. aureus and the effectiveness of various interventions in vivo.
出处 《中华关节外科杂志(电子版)》 CAS 2016年第4期39-46,共8页 Chinese Journal of Joint Surgery(Electronic Edition)
基金 国家自然科学基金(81472108)
关键词 金黄色葡萄球菌 感染 发光蛋白质类 模型 动物 Staphylococcus aureus Infection Luminescent proteins Model animal
  • 相关文献

参考文献24

  • 1Bozic KJ, Ries MD. The impact of infection after total hip arlhroplasty on hospital and surgeon resource utilization [ J ]. J Bone Joint Surg Am, 2005, 87(8) : 1746 - 1751.
  • 2Kurtz SM, Lau E, Schmier J, et al. Infection burden for hip and knee artbroplasty in the United States [ J ]. J Arthroplasty, 2008, 23(7) : 984-991.
  • 3Stavrakis AI, Niska JA, Loftin AH, et al. Understanding infection: a primer on animal models of periprosthetic joint infection[ J]. ScientificWorldJournal, 2013, 2013: 925906.
  • 4Campoceia D, Montanaro L, Arciola CR. Current methods for nlolecular epidemiology studies of implant infections [ J ]. Int J Artif Organs, 2009, 32 ( 9 ) : 642 - 654.
  • 5Lowy FD. How staphylococcus aureus adapts to its host [ J]. N Engl J Med, 2011, 364(21 ) : 1987 - 1990.
  • 6Engelsman AF, Van Der Mel HC, Francis KP, et al. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model [ J ]. J Biomed Mater Res B Appl Biomater, 2009, 88( 1 ) : 123 - 129.
  • 7Francis KP, Joh D, Bellinger-Kawahara C, et al. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct[ J]. Infect Immun, 2000, 68 (6) : 3594 - 3600.
  • 8Hertlein T, Sturm V, Jakob P, et al. 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model [ J ]. PLoS One, 2013, 8(5) : e64440.
  • 9Pribaz JR, Bernthal NM, Billi F, et al. Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study [ J ]. J Orthop Res, 2012, 30(3) : 335 -340.
  • 10Plaut RD, Mocca CP, Prabhakara R, et al. Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging[J]. PLoS One, 2013, 8(3) : e59232.

二级参考文献37

  • 1王子明,王爱民,唐桂阳.骨水泥型人工股骨头置换和术后感染模型的建立[J].中华实验外科杂志,2007,24(4):509-509. 被引量:5
  • 2Craig MR, Poelstra KA, Sherrell JC, et al. A novel total knee arthroplasty infection model in rabbits[ J ]. J Orthop Res, 2005, 23: 1100-1104.
  • 3Southwood RT, Rice JL, MeDonald PJ, et al. Infection in experimental hip arthroplasties[ J ]. J Bone Joint Surg Br, 1985, 67 : 229 - 231.
  • 4Belmatoug N, Cromieux AC, Bleton R, et al. A new model of experimental prosthetic joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization [ J ]. J Infect Dis, 1996, 174:414-417.
  • 5Blomgren G. Hematogenous infection of total joint replacement. An experimental study in the rabbit [ J ]. Acta Orthop Scand Suppl, 1981, 187:61-64.
  • 6Fulkerson E, Valle C J, Wise B, et al. Antibiotic susceptibility of bacteria infecting total joint arthroplasty sites [ J ]. J Bone Joint Surg Am, 2006, 88:1231 -1237.
  • 7Davis JS. Management of bone and joint infections due to Staphylococcus aureus[ J]. Intern Med J, 2005, 35: 79- 96.
  • 8Laure Sarda, Azzam Saleh-Mghir, Can Peker, et al. Evaluation of (99m) Tc-ciprofloxacin scintigraphy in a rabbit model of Staphylococcus aureus prosthetic joint infection[ J]. J Nucl Med, 2002, 43 : 239 - 245.
  • 9De1 Pozo JL, Patel R. Clinical practice. Infection associated with prosthetic joints[J]. N Engl J Med, 2009, 361:787-794.
  • 10Chryssikos T, Parvizi J, Ghanem E, et al. FDG-PET imaging can diagnose periprosthetic infection of the hip[ J]. Clin Orthop Relat Res, 2008, 466:1338 - 1342.

共引文献12

同被引文献44

  • 1Tuba Kuruoglu,Gamze Altun,Enis Kuruoglu,Derya BayırlıTuran,Mehmet EminÖnger.Actions of N-acetylcysteine,daptomycin,vancomycin,and linezolid on methicillin-resistant Staphylococcus aureus biofilms in the ventriculoperitoneal shunt infections:an experimental study[J].Chinese Neurosurgical Journal,2022,8(4):239-247. 被引量:1
  • 2Zhou Junchu Shi Qiaojuan Xie Bo(Huazhong Agricultural University, Key Laboratory of Agricultural Microbiology, Wuhan 430070).Application of Green Fluorescent Protein Gene (gfp) in the Symbiosis between Mesorhizobium Huakuii and Astragalus Sinicus[J].Science Foundation in China,2002,10(2):41-44. 被引量:1
  • 3Bozic KJ, Ries MD. The impact of infection after total hip arlhroplasty on hospital and surgeon resource utilization [ J ]. J Bone Joint Surg Am, 2005, 87(8) : 1746 - 1751.
  • 4Kurtz SM, Lau E, Schmier J, et al. Infection burden for hip and knee artbroplasty in the United States [ J ]. J Arthroplasty, 2008, 23(7) : 984-991.
  • 5Stavrakis AI, Niska JA, Loftin AH, et al. Understanding infection: a primer on animal models of periprosthetic joint infection[ J]. ScientificWorldJournal, 2013, 2013: 925906.
  • 6Campoceia D, Montanaro L, Arciola CR. Current methods for nlolecular epidemiology studies of implant infections [ J ]. Int J Artif Organs, 2009, 32 ( 9 ) : 642 - 654.
  • 7Lowy FD. How staphylococcus aureus adapts to its host [ J]. N Engl J Med, 2011, 364(21 ) : 1987 - 1990.
  • 8Engelsman AF, Van Der Mel HC, Francis KP, et al. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model [ J ]. J Biomed Mater Res B Appl Biomater, 2009, 88( 1 ) : 123 - 129.
  • 9Francis KP, Joh D, Bellinger-Kawahara C, et al. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct[ J]. Infect Immun, 2000, 68 (6) : 3594 - 3600.
  • 10Hertlein T, Sturm V, Jakob P, et al. 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model [ J ]. PLoS One, 2013, 8(5) : e64440.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部