期刊文献+

基于声子晶体理论的舰船液压管路支承用隔振器轴向振动带隙特性研究 被引量:9

Research on the Longitudinal Vibration Band Gaps of Isolator Applied to Ship Hydraulic Pipe-Support Based on the Theory of Phononic Crystals
下载PDF
导出
摘要 利用声子晶体理论,将隔振器设计成由金属和橡胶组成的一维周期性结构,利用其带隙特性实现舰船液压管路的振动控制。采用传递矩阵法和有限元法,对隔振器能带结构和频响函数进行仿真计算,分析材料属性、晶格常数和径长比等因素对带隙频率范围和宽度的影响,根据舰船液压管路振动频率范围,最终确定了隔振器结构尺寸及材料,并对其轴向振动传输特性和减振性能进行了数值仿真和试验验证。试验结果表明,该新型隔振器在600-10 000 Hz以内的频率范围内具有良好的轴向减振性能,能够有效地抑制管路振动向船体结构传播。本研究为舰船液压管路的振动控制提供了一条新的技术途径。 Using the idea of phononic crystals,the ship hydraulic pipeline isolator is designed to be a one-dimensional periodic structure which is composed of metal and rubber.The vibration of ship hydraulic pipeline can be controlled by the band gaps properties of the isolator.The band structure and FRF of the isolator is calculated by the transfer matrix method and finite element method,respectively.The influence of material properties,lattice constant and fineness ratio to the frequency ranges and the width of the band gaps is also be considered,and the best structure parameters are obtained.By combing the numerically calculations and experimental measurements,the results indicate that the isolator has longitudinal vibration band gaps at low frequencies form 600 Hz to 10 000 Hz,and the isolator could control the vibration of ship hydraulic system transferring form pipeline to ship hull structures effectively.The research provides a new technical way for vibration control of ship hydraulic pipeline.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第15期91-98,共8页 Journal of Mechanical Engineering
关键词 声子晶体 液压管路 振动控制 隔振器 带隙 phononic crystals hydraulic pipeline vibration control isolator band gaps
  • 相关文献

参考文献13

  • 1闫辉,姜洪源,李瑰贤,A.M.Ulannov.航空发动机管路支承用金属隔振器性能研究[J].中国机械工程,2007,18(12):1443-1447. 被引量:7
  • 2ELLISON J. Passive vibration control of airborne equipment using a circular steel ring[J]. Journal of Sound and Vibration, 2001, 246(1). 1-28.
  • 3蒋学武,朱石坚.舰船管路橡胶减振器的应用[J].海军工程大学学报,2000,12(4):90-92. 被引量:14
  • 4KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical ReviewLetters, 1993, 71. 2022-2025.
  • 5KUSHWAHA M S, HALEVI P, MARTINEZ G, et al. Theory of acoustic band structure of periodic elastic composites[J]. Physical Review B, 1994, 49: 2313-2322.
  • 6SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration, 1992, 158: 377-382.
  • 7WEN Jihong, WANG Gang, YU Dianlong, et al. Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure[J] Journal ofAppliedPhysics, 2005, 97: 114907.
  • 8YU Dianlong, LIU Yaozong, QIU Jing, et al. Complete flexural vibration band gaps in membrane-like lattice structures[J]. Physics LettersA, 2006, 357: 154-158.
  • 9SHEN Huijie, WEN Jihong, YU Dianlong, et al. The vibrational properties of a periodic composite pipe in 3D space[J]. Journal of Sound and Vibration, 2009, 328: 57-70.
  • 10沈礼,吴九汇,陈花玲.声子晶体结构在汽车制动降噪中的理论研究及应用[J].应用力学学报,2010,27(2):293-297. 被引量:19

二级参考文献67

共引文献66

同被引文献79

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部