期刊文献+

极小(C_4,K_5;11)-平面图

Minimal(C_4,K_5;11)-P-graphs
原文传递
导出
摘要 若n阶平面图G的任一子图都不与H_1同构,且G的任一子图都不与H_2同构,则G称为(H_1,H_2;n)-平面图;平面Ramsey数指不存在(H_1,H_2;n)-平面图的最小n。本文利用对称性及反证等方法,得到了所有的极小(C_4,K_5;11)-平面图,有助于证明平面Ramsey数。 An (H1 ,H2;n)-P-graph is a graph with order n, which does not contain a subgraph isomorphic to H1, and its complement has no subgraph isomorphic to H2. Planar Ramsey number is the minimum order of graph ,which does not con- tain (H1 ,H2 ;n)-P-graph. In this paper,all the minimal (C4 ,K5 ;11 )-P-graphs are given by the methods of disproof and symmetry.
作者 段春燕
出处 《世界科技研究与发展》 CSCD 2016年第4期832-839,共8页 World Sci-Tech R&D
关键词 Ramsey型平面图 平面Ramsey数 极小图 Ramsey type planar graph planar Ramsey number minimal graph
  • 相关文献

参考文献8

  • 1王清贤.Ramsey数在计算机科学中的应用[J].信息工程学院学报,1997,16(1):1-6. 被引量:3
  • 2WALKER K. The Analog of Ramsey Numbers for Planar Graphs [M]. London:Bulletin of the London Mathematical Society 1,1969: 187-190.
  • 3STEINBERG R,TOVEY CA. Planar Ramsey Number[ Jl. Journal of Combinatorial Theory Series B, 1993,59 (2) :288-296.
  • 4GORGOL I. Planar Ramsey Numbers [ J ]. Discussi_ones Mathematicae Graph Theory, 2005,25 ( 1 ) :45-50.
  • 5BIELAK H. A note on the Ramsey number and the planar Ramsey number for C4 and complete graphs [ J ]. Discussiones Mathematicae Graph Theory, 1999,19 ( 2 ) : 135-142.
  • 6BIELAK H, GORGOL I. The Planar Ramsey Number for C4 and K5 Is 13 [J]. Discrete Mathematics ,2001,236 ( 1-3 ) :43-51.
  • 7SUN Yongqi, YANG Yuansheng, LIN Xiaohui, et al. The planar Ram- sey number PR ( C4, K7 ) [ J ]. Discrete Mathematics, 2008, 308 (23) :5841-5848.
  • 8段春燕.极小(C_4,K_4;7)-平面图[J].世界科技研究与发展,2014,36(6):658-659. 被引量:1

二级参考文献9

  • 1C. R. J. Clapham. The Ramsey numberr(C 4, C4, C4)[J] 1987,Periodica Mathematica Hungarica(4):317~318
  • 2WALKER K. The Analog of Ramsey Numbers for Plmaar Graphs [M]. The Bulletin of the London: Mathematical Society 1,1969: 187-190.
  • 3STEINBERG R,TOVEY CA. Planar Ramsey Number[J]. Journal of Combinatorial Theory Series B, 1993,59 (2) :288-296.
  • 4GORGOL I. Planar Ramsey Numbers[J]. Discussiones Mathematicae Graph Theory,2005,25 ( 1 -2) :45-50.
  • 5BIELAK H,GORGOL I. The Planar Ramsey Number for CA and K5 Is 13 [J]. Discrete Mathematics,2001,236 ( 1 - 3 ) :43-51.
  • 6BIELAK H. A note on the Ramsey number and the planar Ramsey number for CA and complete graphs [J]. Discussiones MathematicaeGraph Theory, 1999,19 (2) : 135-142.
  • 7SUN Yongqi, YANG Yuansheng, LIN Xiaohui, et al. The planar Ram- sey number PR ( CA, K7 ) [J]. Discrete Mathematics , 2008,308 (23) :5 841-5 848.
  • 8SUN Yongqi, YANG Yuansheng, LIN Xiaohui, et al. The Planar Ram- sey Number PR ( K4-e, K5 ) [J]. Discrete Mathematics, 2007,307 ( 1 ) : 137-142.
  • 9WHITNEY H. Non - Separable and Planar Graphs [J]. Tansactions of The American Mathematical Society, 1932,54:339-362.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部