期刊文献+

面向移动时空轨迹数据的频繁闭合模式挖掘 被引量:5

Frequent closed patterns mining for mobile trajectory data
下载PDF
导出
摘要 移动泛在感知设备的广泛普及为移动轨迹数据的大规模采集、存储与分析开拓了广阔的空间。通过对用户的移动轨迹数据进行分析挖掘,发现其中所蕴含的有价值的行为模式与特征,对于基于位置的服务(Location-based Service,LBS),城市交通管理,精准广告营销等领域均具有重要的价值。文中针对移动轨迹频繁模式规模过大、信息冗余问题定义了频繁闭合移动轨迹模式,以经典闭合序列模式挖掘算法为基础提出了适应于移动轨迹数据的频繁闭合模式Close Traj算法,分别通过对仿真数据与真实数据的实验测试,结果显示文中所提出的Close Traj算法对于频繁闭合移动轨迹模式挖掘问题具有较强的适用性,同时在运行效率方面具有显著优势。 Thanks to the widespread popularity of mobile ubiquitous sensing devices,the acquisition, stor- age and analysis of large-scale mobile trajectory data have broad prospects for technology applications. By means of analysis and mining for users' mobile trajectory history ,we discover meaningful behavior pat- terns and characteristics behind the recorded trajectories. The above-mentioned discovered knowledge is of great value for location-based services, urban traffic management ,target advertising and many other areas. In this paper, aimed at the over-sized issue and information redundancy problem in frequent movement trajectory patterns, a conception of frequent close moving trajectory pattern is proposed. Moreover, based on classical closed sequential pattern mining algorithm, a frequent close pattern approach, namely CloseTraj algorithm, is devised under the condition of moving trajectory data. Based on the simulation and real data- set,the corresponding results show that our proposed CloseTraj algorithm has strong adaptability to the aforementioned problem with significant advantages in terms of operational efficiency.
出处 《西安科技大学学报》 CAS 北大核心 2016年第4期573-576,598,共5页 Journal of Xi’an University of Science and Technology
基金 国家自然科学基金(61402360)
关键词 移动轨迹 数据挖掘 频繁闭合模式 mobile trajectory data mining frequent closed pattern
  • 相关文献

参考文献9

  • 1Pasquier N, Bastide Y, Taouil R, et al. Discovering fre- quent closed itemsets for association rules [ C ]//Data- base Theory - ICDT' 99. Springer Berlin Heidelberg, 1999:398 -416.
  • 2Zaki M J, Hsiao C J. CHARM:An efficient algorithm for closed itemset mining [ C ]//SDM, 2002 (2) :457 - 473.
  • 3Yah X, Hart J, Afshar R. CloSpan: Mining closed se- quential patterns in large datasets [ C ]//In SDM,2003: 166 - 177.
  • 4Wang J, Han J. BIDE:Efficient mining of frequent closed sequences [ C ]//Data Engineering, 2004. Proceedings. 20th International Conference on. IEEE,20O4.
  • 5Fosca Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Traj- ectory pattern mining[ C ]//In : Proceedings of the ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining, Scan Jose, California, USA, 2007.
  • 6Anthony J T Lee, Yi-An Chen, Weng-Chong IP. Mining frequent trajectory patterns in spatial-temporal database [J]. Information Sciences, 2009, 179 ( 13 ) : 2 218 -2231.
  • 7Huiping Cao, Nikos Mamoulis, David W. Cheung, Mining frequent spatio-temporal sequential patterns [ C ]//In: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM ,2005.
  • 8Jae Du Chung, Oh Hyun Paek, Jun Wook Lee, et al. Temporal pattern mining of moving objects for location- based service [ C ]//In : Proceedings of the 13 th Interna- tional Conference on Database and Expert Systems Ap- plications,331 - 340.
  • 9Arthur A Shaw, Gopalan N P. Frequent pattern mining of trajectory coordinates using apriori Algorithm[ J]. Inter- national Journal of Computer Application, 2011, 22 (9):1-7.

同被引文献46

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部