期刊文献+

超临界压力下竖直圆管内不同流体的传热特性 被引量:3

Heat Transfer Characteristics of Different Fluids in Vertical Tube under Supercritical Pressure
下载PDF
导出
摘要 为了深入认识超临界压力下不同流体传热中的共性反映出的传热机理及物性导致的特性差异,以水和氟利昂R134a为工质分别在SWAMUP回路和SMOTH回路上开展了竖直圆管内上升流传热试验。在正常传热、传热强化、小质量流速时浮升力导致传热恶化和大质量流速时加速效应导致传热恶化的工况中,氟利昂和水的换热系数(HTC)随无量纲温度表现出一致的变化规律。浮升力无量纲数πB增大,换热系数与经典关系式计算值之比减小;加速效应无量纲数πA较小时,换热系数比随πA的增大而增大,达到峰值后换热系数比随πA的增大而减小。πB对超临界水试验数据的相关性更佳,而πA对超临界氟利昂试验数据的相关性更好。无量纲数表征的超临界压力下传热规律的高度相似性初步验证了以模化流体氟利昂R134a研究超临界水传热特性是合理可行的。 To understand heat transfer mechanism from general character and make clear the difference caused by properties,experiments of heat transfer to water and Freon R134 aflowing upward in vertical tubes were conducted on SWAMUP and SMOTH test facilities,respectively.The variations of heat transfer coefficients of water and Freon with dimensionless temperature are coincident in the case of normal heat transfer,heat transfer enhancement and heat transfer deterioration due to buoyancy force and acceleration effect.The HTC ratio decreases with the increase of dimensionless parameterπB.The HTC ratio increases first and then decreases with the increase of dimensionless parametersπA.The dimensionless parametersπBandπA show better relevance on the supercritical water and Freon experimental data,respectively.The investigation of the heat transfer behavior of supercritical water in the SCWRs by means of model fluidFreon R134 ais proved reasonable and feasible because of the similarity dependence on dimensionless parameters.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2016年第8期1395-1401,共7页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(51206106)
关键词 模化流体 超临界传热 换热系数 传热恶化 无量纲数 model fluid supercritical heat transfer heat transfer coefficient heat transfer deterioration dimensionless number
  • 相关文献

参考文献10

  • 1US DOE, GIF. A technology roadmap for Gen- eration IV nuclear energy systems[R]. US: USDOE, 2002.
  • 2MORI H, KAIDA T, OHNO M, et al. Heat transfer to a supercritical pressure fluid flowing in sub-bundle channels[J]. Journal of Nuclear Science and Technology, 2012, 49(4): 373-383.
  • 3KIM D E, KIM M H. Experimental investiga- tion of heat transfer in vertical upward and down- ward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191.
  • 4赵萌,李虹波,张戈,顾汉洋,王磊,程旭.圆管内超临界水上升、下降流动传热实验研究[J].原子能科学技术,2012,46(B09):250-254. 被引量:5
  • 5ZHANG S Y, GU H Y, CHENG X, et al. Ex- perimental study on heat transfer of supercritical Freon flowing upward in a circular tubeI-J]. Nu- clear Engineering and Design, 2014, 280: 305-315.
  • 6张思宇,程旭,顾汉洋.竖直圆管内超临界压力氟利昂传热试验研究[J].原子能科学技术,2015,49(12):2150-2156. 被引量:1
  • 7KOSHIZUKA S, OKAY. Computational analy- sis of deterioration phenomena and thermal- hydraulic design of SCR[C]// Proceedings of 1st International Symposium on Supercritical Water cooled Reactors, Design and Technology. [S. 1.]: [s. n.], 2000.
  • 8JACKSON J D, HALL W B. Influences of buoy- ancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[M]//Turbulent forced convection in channels and bundles. New York: Hemisphere, 1979: 613-640.
  • 9JACKSON J D. Progress in developing an im- proved empirical heat transfer equation for use in connection with advanced nuclear reactors cooled by water at supercritical pressure[C]//Proceed- ings of 17th International Conference of Nuclear Engineering (ICONE17). [S. 1. ]: [s. n. ], 2009.
  • 10CHENGX, YANGYH, HUANGSF. Asim- plified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1 120-1 128.

二级参考文献24

  • 1CHENG X, SCHULENBERG T. Heat transfer at supercritical pressures-literature review and application to a HPLWR, FZKA-6609[R]. Ger- many: FZKA, 2001.
  • 2PIORO I, DUFFEY R B. Experimental heat transfer in supercritical water flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235:2 407-2 430.
  • 3YAMAGATA K, NISHIKAWA K, HASEGA- WA S, et al. Forced convective heat transfer to supercritical water flowing in tubes [J]. Int J Heat Mass Transfer, 1972, 15 (12): 2 575 2 593.
  • 4JACKSON J D, HALL W B. Forced convection heat trans{er to fluids at supercritical pressure [J]. Turbulent Forced Convection in Channels and Bundles, 1979, 2: 563-611.
  • 5KIM H Y, KIM H, SONG J H, et al. Heat transfer in a vertical tube using CO2 at supercriti- cat pressure[J]. Jouranal of Nuclear Science and Technology, 2007, 44(3): 285-293.
  • 6MORKRY S, PIORO I, KIRILLOV P, et al. Supercritical-water heat transfer in a vertical bare tube[J]. Nuclear Engineering and Design, 2010, 240: 568-576.
  • 7BAE Y Y, KIM H Y. Convective heat transfer to CO2 at a supercritical pressure flowing verti- cally upward in tubes and an annular ehannel[J]. Experimental Thermal and Fluid Science, 2009, 33 : 329-339.
  • 8WATTS M J, CHOU C T. Mixed convection heat transfer to supercritical pressure water[C] //Int. Heat Transfer Conf. Miinchen: [-s. n.-], 1982: 495-500.
  • 9CHENGX, YANGY H, HUANGSF. Asim- plified method for heat transfer prediction of su- percritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36:1 120-1 128.
  • 10A technology roadmap for Generation IV nuclear energy systems[C]//U. S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum. US: DOE, 2002.

共引文献4

同被引文献23

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部