期刊文献+

利用分组算法实现高效的并行程序模型检测

Efficient Concurrent Program Model Checking Based on Grouping
下载PDF
导出
摘要 在并行时代,模型检测技术(通常也被称为状态空间搜索)是验证并行程序正确性的有效方法.由于线程执行次序的不确定性,线程之间交互次序的改变导致程序状态呈指数性增长,因此在利用状态空间搜索法搜索程序状态时,状态爆炸是亟需解决的难题.为了改善该问题,提出基于分组的模型检测方法.针对操作不同变量的线程,在程序中简单添加制导语句对其进行分组,之后利用该分组信息搜索状态空间,并实时记录已完成搜索的分组信息,从而避免搜索冗余状态.实验结果表明,本文提出的方案对于缓解状态爆炸问题有很好的效果,制导分组前后,测试程序的状态集平均减少了67%,有效提高了并行程序验证效率. In the era of parallel, model checking { also commonly referred as state-space search ) is an effective way to verify the cor- rectness of parallel programs. Because of the non-determinism of the threads scheduling, changing the order of the interleaving among the threads execution lead to the states increases exponentially. The state explosion problem is to be solved urgently when using the state-space searching method search program. To alleviate this phenomenon, this paper propose a group-based model checking method. Adding the directive-based language in the verified program, and let the thread grouping with different variable operation. During the verification process, real-time monitor whether the group is completed, and search the state space with the completed group information to avoid redundant states. The experimental results show that our scheme have a good effect to alleviate the state explosion problem,af- ter the directive grouping, the state set of testing program reduced on average by 67%, and improved the efficiency of the parallel pro- gram verification.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第9期1898-1903,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60970023)资助 国家"九七三"重点基础研究发展计划项目(2011CB302501)资助 国家"八六三"高技术研究发展计划项目(2012AA010902 2012AA010901)资助 国家科技重大专项项目(2009ZX01036-001-002 2011ZX01028-001-002-3)资助
关键词 制导语言 源到源编译 模型检测 分组 directive-based language source to source compiler model checking grouping
  • 相关文献

参考文献12

  • 1I,erda F, Kapinski J, Maka H, et al. Model checking in-the-loop: finding counterexamples by systematic simulation[ C ]. In: Proceed- ings of the 2008 American Control Conference, Seattle, WA,2008 : 2734-2740.
  • 2Abdulla P, Aronis S, Jonsson B, et al. Optimal dynamic partial order reduction[ C]. In: Proceedings of the 41st ACM SIGPLAN-SI- GACT Symposium on Principles of Programming Languages,2014: 373-384.
  • 3Flanagan C. Patrice godefroid: dynamic partial-order redu tion for model checking software[ C]. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan- guages,NY USA,2005 : 110-121.
  • 4Mazurkiewicz A. Introduction to trace theory, The book of traces [ M ]. Singapore: World Scientific Press, 1995.
  • 5袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 6Mazurkiewicz A. Trace theory, in Petri nets:applications and rela- tionships to other models of concurrency [ M ]. Berlin: Springer Press, 1986.
  • 7梁中兴,罗贵明,旷宏斌.基于CEGAR偏序化简的并行程序死锁检测[J].计算机工程,2009,35(19):65-68. 被引量:2
  • 8Levin V,Palmer R,Qadeer S, et al. Sound transaction-based reduc- tion without cycle detection, in model checking software [ M ]. Ber- lin: Springer Press,2005.
  • 9Grumberg O, Veith H. 25 years of model checking : history, achieve- ments, perspectives [ M ]. Berlin: Springer Press,2008.
  • 10Run-time options: spin[ EB/OL ]. http://spinroot, corn/spin/ Man/Spin. htm1,2014.

二级参考文献10

  • 1Clarke E M, Grumberg O, Jha S, et al. Counterexample-Guided Abstraction Refinement[C]//Proc. of the International Conference on Computer Aided Verification. Heidelberg, Germany: Springer- Verlag, 2000: 154-169.
  • 2Clarke E M, Grumberg O, Long D E. Model Checking and Abstraction[J]. ACM Transaction on Programming Languages and System, 2000, 16(5): 1512-1542.
  • 3Godefroid P. Partial-order Methods for the Verification of Concurrent Systems--An Approach to the State-explosion Problem[C]//Lecture Notes in Computer Science. [S. l.]: Springer-Verlag, 1996.
  • 4Peled D. Combining Partial Order Reductions with On-the-fly Model-checking[J]. Formal Methods in System Design, 1996, 8(1): 39-64.
  • 5Chaki S, Clarke E M, Ouaknine J, et al. Automated, Compositional and Iterative Deadlock Detection[C]//Proc. of the 2nd ACM and IEEE International Conference on Formal Methods and Models for Co-design. [S. l.]: IEEE Press, 2004: 201-210.
  • 6MacQueen J.Some Methods for Classification and Analysis of Multivariate Observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,1967.
  • 7Wang Wei,Yang Jiong,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]//Proc.of the 23rd International Conference on Very Large Data Bases,1997.
  • 8Agrawal R,Gehrke J,Gunopulcs D.Automatic Subspace Clustering of High Dimensional Data for Data Mining Application[C]//Proc.of ACM SIGMOD Intconfon Management on Data,Seattle,WA,1998:94-205.
  • 9Guha S,Rastogi R,Shim K.Cure:An Efficient Clustering Algorithm for Large Database[C]//Proc.of ACM-SIGMOND Int.Conf.Management on Data,Seattle,Washington,1998:73-84.
  • 10汤效琴,戴汝源.数据挖掘中聚类分析的技术方法[J].微计算机信息,2003,19(1):3-4. 被引量:87

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部