期刊文献+

分块二维最大间距准则的特征提取方法 被引量:1

Modular 2DMMC for Feature Extraction
下载PDF
导出
摘要 针对二维最大间距准则(Two Dimensional Maximum Margin Criterion,2DMMC)算法进行特征提取时,无法提取局部的特征.同时,该算法也受不同的表情、光照以及姿态等条件的影响,识别的效果也大大降低.因此,提出一种基于分块二维MMC(Modular Two Dimensional Maximum Margin Criterion,M2DMMC)的人脸识别方法.首先,对图像矩阵进行分块,然后对分块后的矩阵进行2DMMC特征抽取,对每一子块抽取的特征进行整体融合,最后采用最近邻判决准则进行分类识别.在ORL,Yale人脸图像库进行实验的结果表明,新算法相对于MMC算法、二维MMC算法以及分块MMC算法均有较好的识别性能. To tackle Two-Dimensional Maximum Margin Criterion( 2DMMC ) algorithm for feature extraction, which can not effective- ly extracts local features. Meanwhile, the algorithm was affected by different facial expressions, illumination and pose, etc. So, Modular Two Dimensional Maximum Margin Criterion ( M2DMMC ) is proposed in this paper. First, in proposed approach, the original images are divided into modular images, which are also called sub-images. Then, M2DMMC method is directly used to the sub-images to ob- tain feature from the previous step. Features of sub-images are combined into global Features. At last, the recognition results are ob- tained by Nearest Neighbor (NN) classifier. By the test on ORL,and Yale face database,the results show that the proposed algorithm with respect to the MMC,2DMMC and MMMC algorithm has better recognition performance.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第9期2088-2092,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61462064,61203243)资助 江西省自然科学基金项目(20122BAB211025)资助 高维信息智能感知与系统教育部重点实验室(南京理工大学)基金项目(30920140122006)资助 中国博士后基金项目(2014T70453,2013M530223)资助 江苏省博士后基金项目(1301095C)资助
关键词 二维最大间距准则 分块二维最大间距准则 人脸识别 特征提取 two dimensional maximum margin criterion modular two dimensional maximum margin criterion face recognition featureextraction
  • 相关文献

参考文献5

二级参考文献72

  • 1丁学仁 蔡庙可.工程中的矩阵理论[M].天津:天津大学出版社,1995.115-118.
  • 2A Pentland. Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans on Pattern Anal Machine Intell, 2000, 22(1): 107~119
  • 3Peter N Belhumeur, Joao P Hespanha, David J Kriengman. Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans on Pattern Anal Machine Intell, 1997, 19(7): 711~720
  • 4Chengjun Liu, Harry Wechsler. A shape-*$and texture-based enhanced Fisher classifier for face recognition. IEEE Trans on Image Processing, 2001, 10(4): 598~608
  • 5Jian Yang, J Y Yang. Optimal FLD algorithm for facial feature extraction. SPIE Proc Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision. 2001
  • 6Li-Fen Chen, H-Y Mark Liao, M-T Ko et al. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 32: 317~324
  • 7Zhong Jin, J Y Yang, Z S Hu et al. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 33(7): 1405~1416
  • 8Liu K, Cheng Y-Q, Yang J-Y et al. Algebraic feature extraction for image recognition based on an optimal discriminant criterion. Pattern Recognition, 1993, 26(6): 903~911
  • 9Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 10Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.

共引文献128

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部