期刊文献+

采用空间词袋模型的图像分类方法 被引量:2

Image Classification Method Based on Spatial Bag of Words Model
下载PDF
导出
摘要 针对词袋模型忽略视觉单词之间的空间关联而导致分类效果降低的问题,提出一种词袋模型空间信息的构造方法,算法分别统计了图像整体与局部的直方图信息.首先将图像中具有相同视觉单词标记的图像块按照到原点的距离大小进行排序,并依次计算排序后相邻两图像块与横轴之间的夹角,进而形成各标记的全局角度直方图信息;然后计算相同标记的图像块的局部频率直方图,将二者直方图信息结合起来,完成词袋模型空间信息的构造.实验发现,采用具有空间信息的词袋模型进行图像分类,其分类结果优于其他空间算法5%以上. To solve the problem of bag-of-words model which ignores the spatial connection between visual words, an approach for spatial information construction for bag-of-words is proposed. The histogram information in Global and local are calculated respecfly. First, the image patches with a same visual word label are sorted according to the distance to the origin. Then the angle between the line connecting two adjacent patches and the horizontal axis is computed,and the global angle histogram is established after statistical analy- sis. The global histogram is then combined with a local one which considers the local frequency histogram to construct the spatial infor- mation of bag-of-words. The experiments show that the classification result of this method is better than other algorithms more than 5%.
作者 陈莹 高含
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第9期2099-2103,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61104213 61573168)资助 江苏省自然科学基金项目(BK2011146)资助 江苏省产学研前瞻性联合研究项目(BY2015019-15)资助
关键词 词袋模型 空间信息 图像分类 角度 频率 bag-of-words spatial information image classification angle frequency
  • 相关文献

参考文献15

  • 1Fei Fei L, Perona P. A bayesian hierarchical model for learning nat- ural scene categories [ C ]. Computer Vision and Pattern Recogni- tion, CVPR 2005, IEEE Computer Society Conference on. IEEE, 2005,2:524-531.
  • 2Wang Q ,Wan S, Yue L, et al. Visual attention based bag-of-words model for image classification [ C ]. Sixth International Conference on Digital Image Processing. International Society for Optics and Photonics ,2014:91591P-91591P-7.
  • 3Li X C, Zhao C, Cang Y. Face recognition using the improved bag of words model [ C ]. Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Third International Confer- ence on,IEEE,2013:772-775.
  • 4Kleber F, Diem M, Sablatnig R. Form classification and retrieval u-sing bag of words with shape features of line structures[ C]. IS&T/ SPIE Electronic Imaging. International Society for Optics and Pho- tonics ,2013:902107-902107-9.
  • 5Tani Y, Hotta K. Robust human detection to pose and occlusion u- sing bag-of-words[ C]. Pattern Recognition (ICPR) ,22nd Interna- tional Conference on ,IEEE,2014:4376-4381.
  • 6Thai N D, Le T S, Thoai N, et al. Learning bag of visual words for motorbike detection [ C ]. Control Automation Robotics & Vision ( ICARCV), 2014 13th International Conference on, IEEE, 2014 : 1045-1050.
  • 7Giouvanakis E, Kotropoulos C. Saliency map driven image retrieval combining the bag-of-words model and PLSA [ C ]. Digital Signal Processing ( DSP), 19th International Conference on, IEEE,2014 : 280-285.
  • 8Lazebnik S, Schmid C, Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories [ C ]. Computer Vision and Pattern Recognition,IEEE Computer Society Conference on ,IEEE,2006,2:2169-2178.
  • 9Bosch A,Zisserman A,Munoz X. Representing shape with a spatial pyramid kernel [ C ]. Proceedings of the 6th ACM International Conference on Image and Video Retrieval,ACM,2007:401-408.
  • 10Yang Y,Newsara S. Spatial pyramid co-occurrence for image clas- sification [ C ]. Computer Vision ( ICCV), IEEE International Con- ference on, IEEE,2011 : 1465-1472.

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部