摘要
针对灰色预测模型GM(1,1)拟合精度低的情况,创新性的提出GM(1,1)模型同正弦函数、余弦函数、指数函数和同常数相结合的灰色非线性模型,并给出模型解算和精度评定方法。在此基础上,根据变权原理又提出了最优非负变权灰色非线性模型解算思路。并用某桥梁变形监测工程实例进行验证。通过比较分析各模型精度发现:最优非负变权灰色非线性模型预测精度较GM(1,1)模型、灰色非线性模型得到一定程度的提高,可以应用于桥梁变形预测中。
The GM (1,1) model litting precision in some case is low, so this paper put lorward the grey nonlinear model which combined GM (1,1) with sine lunction,cosine lunction,exponential lunction and constant. the accuracy evaluation method also given by this paper. On this basis,the optimal non-negative variable weight combination model and it’s calculating way have been proposed according to the principle ol variable weight. The project ol bridge deformation monitoring is used to verily the leasibility ol the model. By comparing the precision,we lound that the optimal non- negative variable weight combination l'orecasting accuracy is higher than GM ( 1 , 1 ) model and the grey nonlinear model. Therelore,we can apply the optimal non-negative variable weight combination model to the bridge delormation prediction.
出处
《城市勘测》
2016年第4期126-129,133,共5页
Urban Geotechnical Investigation & Surveying
基金
国家自然科学基金项目(41461089)
广西"八桂学者"岗位专项经费资助项目
广西空间信息与测绘重点实验室资助课题(桂科能151400702
140452402)
广西矿冶与环境科学实验中心资助课题(KH2012ZD004)
广西研究生教育创新计划项目(YCSZ2014151
YCSZ2012083)
广西自然科学基金项目(2014GXNSFAA118288)
关键词
GM(1
1)
灰色非线性模型
最优非负变权灰色非线性模型
桥梁变形预测
GM (1,1)
the grey non-linear models
the optimal non-negative variable weight combination model
the bridge delormation prediction