期刊文献+

基于稀疏自编码器和SVM的垃圾短信过滤 被引量:1

Spam messages filtering based on sparse auto-encoder and SVM
下载PDF
导出
摘要 在垃圾短信过滤系统中,传统方法的短信息特征很难准确地考虑到词语的贡献。提出了一种新的特征词查找和特征构造方法,较好地反映了词语之间的关系和在短信中的贡献度。通过联合采用稀疏自编码器和支撑矢量机(SVM)进行学习和分类仿真实验,结果表明过滤效果比目前报道的类似分类器效果有显著的提升和改进。 In the spam messages filtering system,the traditional methods are difficult to consider the words contribution for short message feature correctly,so a new feature words search and feature construction method is proposed,which can reflect the relationship among the words and contribution in short messages. The simulation experiments of learning and classification were performed in combination with the sparse auto-encoder and support vector machine(SVM). The results show that,in comparison with the reported similar classifiers,the filtering effect of the proposed method is promoted and improved significantly.
出处 《现代电子技术》 北大核心 2016年第17期145-148,共4页 Modern Electronics Technique
基金 国家自然科学基金项目(60443004):人工生命动觉智能行为选择图式理论研究 校内科研基金资助项目(2014xcxtd05 2014xzky05)
关键词 支撑矢量机 稀疏自编码器 短信 特征提取 support vector machine sparse auto-encoder short message feature extraction
  • 相关文献

参考文献4

二级参考文献47

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2张燕,傅建明.垃圾短信的识别与追踪研究[J].计算机应用研究,2006,23(3):245-247. 被引量:21
  • 3张玉芳,彭时名,吕佳.基于文本分类TFIDF方法的改进与应用[J].计算机工程,2006,32(19):76-78. 被引量:121
  • 4Miguel E Ruiz. Padmini Srinivasan Hierarchical Text Categorization Using Neural Networks [J] .InformationR, etrieval,2002, 5(1): 87-118.
  • 5Shasha Liao, Minghu Method Based On Concept Classification [J]. New M Jiang. A New Feature Selection Extraction In Automatic Chinese Text athematics and Natural Computation (NMNC), 2007, 03(03): 331-347.
  • 6Salton G, WongA. On the specification of term value in automatic indexing[J]. Journal of Documentation,1973, 29(4): 351-372.
  • 7Yang Y, Pedersen J Q. A comparative study on feature selection in text categorization[A] / / Proceed nternational Conference on Machine Learning( Francisco: Morgan Kaufmann Publishers. 1997 ings of the'14th CML' 97)[c]. San 412-420.
  • 8Lanckriet G,Oristianini N,Bartlett P,et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning R, esearch,2004,5(12): 27-72.
  • 9AMARI S, WU S. Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J].Neural Networks,1999, 12(6): 785-789.
  • 10Edda Leopold, Jorg Kinderm&nn. Text Categorization with Support Vector Machines, How to represent text in input space[J] Machine Learning, 2002, 46(1): 425-444.

共引文献26

同被引文献30

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部