期刊文献+

基于LQG控制的风电机组独立变桨距仿真研究

Simulation of Individual Pitch Control on Wind Turbines Based on LQG Strategiesi
下载PDF
导出
摘要 阐述了独立变桨的控制原理,通过对大型风电机组数学模型的简化分析,建立了带卡尔曼滤波器的多变量LQG控制器模型,并使用Blade软件对统一变桨距、PI控制独立变桨距及LQG控制独立变桨距的风力发电机组各关键部位载荷进行了仿真分析。结果表明,相对于统一变桨控制,独立变桨控制可以显著降低风力机各部分载荷,而采用LQG控制策略可以更加有效的降低变桨主轴、叶根、偏航轴承等部件的疲劳载荷,较适合用于大型风力发电机组的独立变桨距控制。 In this paper, the p r in c ip le o f the in d iv id u a l p itc h control is d e s c r ib ed, the m ultivar ia ble linear quadratic Gaussian ( LQG ) fu n c t io n control model w ith coleman f i l te r is established, and the simulation analysis for the loads o f key units in the w ind turbine is conducted by col lec t ive p itc h c o n t ro l, PI individual pitch control and LQG in d iv id u a l p itc h control in the blade p la t fo rm . The experimental test results show that the individual p itc h control can be used to ef fect ively reduce the u n it loads o f the wind turbine comparing wi th the col lec t ive p itc h c o n t ro l, and the LQG control can be used to effect ively reduce the fatigue loads of shaft bear ing, blade root and yaw b e a r in g, e tc. , so i t is more suitable fo r the individual pitch control of large scale w ind tu rb in e .
作者 徐立军
出处 《微处理机》 2016年第4期75-78,共4页 Microprocessors
基金 新疆维吾尔自治区国际科技合作计划项目(20156007)
关键词 线性二次高斯函数 独立变桨距 多变量控制 Blade软件 降载荷 LQG Individual p itc h control M u lt iva r ia b le control Blade software load reducing
  • 相关文献

参考文献5

二级参考文献41

  • 1李德源,叶枝全,陈严,包能胜.风力机叶片载荷谱及疲劳寿命分析[J].工程力学,2004,21(6):118-123. 被引量:74
  • 2林勇刚,李伟,陈晓波,顾海港,叶杭冶.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,26(6):780-786. 被引量:62
  • 3Jelavic M, Petrovic V, Peric N. Individual pitch control of wind turbine based on loads estimation [ C ]//34th Annual Conference of IEEE-IECON. Orlando, 2008: 228 - 234.
  • 4Shigeo M, Hideaki N, Masayuki S. Sensorless output maximization control for variable-speed wind genera- tion system using IPMSG [ J ].IEEE Transactions on Industry Applications ,2005,41 ( 1 ) :60 -67.
  • 5Trkhk S Z, Duran A. Progress and recent trends in wind energy[J]. Progress in Energy and Combustion Science, 2004, 30(5): 501-543.
  • 6Selvam K, Kan S, Wingerden J W, et al. Feedback-feedforward individual pitch control for wind turbine load reduction[J]. International Journal of Robust and Nonlinear Control, 2009, 19(1): 72-91.
  • 7Van Engelen T. Control design based on aero- hydroservo-elastic linear models from TURBU (ECN)[C]// Proceedings of the European Wind Energy Conference, Mila, Italy, 2007: 7-10.
  • 8Kallesoe B S. A low-order model for analysing effects of blade fatigue load control[J]. Wind Energy, 2006, 9(5): 421-436.
  • 9Van Engelen T, Schaak P. Oblique inflow model for assessing wind turbine controllers[C]//Proceedings of the 2^nd Conference on the Science of Making Torque from Wind, Denmark, 2007: 241-246.
  • 10Hansen M, Thomsen K, Fuglsang P, et al. Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments[J]. Wind Energy, 2006, 9(2): 179-191.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部