摘要
针对维数较高的单目标非约束函数优化问题,探讨一种易于应用的新型果蝇优化算法。算法设计中,优质种群经由局部变异增强探测能力;中等种群经由优质种群有引导性地实现个体转移;劣质种群经由均匀变异展开多方位搜寻多样个体。比较性的数值实验显示,该算法求解偏高维函数优化问题具有一定的优势。
For the problem of single-objective non-constrained higher-dimensional function optimization, this work investigates a new applicable fly optimization algorithm. In the design of algorithm, a local mutation strategy ensures the elitist sub-population to achieve strong exploitation; the medium sub-population transforms its indi- viduals towards specific directions upon such elitist sub-population; the inferior sub-population creates diverse individuals along multiple directions. Comparatively numerical results have showed that the proposed algorithm is of potential for higher-dimensional function optimization problems.
出处
《贵州大学学报(自然科学版)》
2016年第2期93-96,共4页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金(61563009)
教育部博士点基金(20125201110003)
贵州大学研究生创新基金(研理工2015057)
关键词
果蝇优化
函数优化
多模态
fly optimization
function optimization
multi-modality