摘要
This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverage time, the frequency of coverage, average time per coverage and maximum coverage gap, etc. is required simultaneously. By introducing index normalization method to convert performance indices into dimensionless variables within the range of [0, 1], a design optimization method based on the principal component analysis and cluster analysis is proposed, which consists of index normalization method, principal component analysis, multiple-level cluster analysis and weighted evaluation method. The results of orbit optimization for earth observation satellites show that the optimal orbit can be obtained by using the proposed method. The principal component analysis can reduce the total number of indices with a non-independent relationship to save computing time. Similarly, the multiple-level cluster analysis with parallel computing could save computing time.
This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverage time, the frequency of coverage, average time per coverage and maximum coverage gap, etc. is required simultaneously. By introducing index normalization method to convert performance indices into dimensionless variables within the range of [0, 1], a design optimization method based on the principal component analysis and cluster analysis is proposed, which consists of index normalization method, principal component analysis, multiple-level cluster analysis and weighted evaluation method. The results of orbit optimization for earth observation satellites show that the optimal orbit can be obtained by using the proposed method. The principal component analysis can reduce the total number of indices with a non-independent relationship to save computing time. Similarly, the multiple-level cluster analysis with parallel computing could save computing time.
基金
Funded by 973 Program of Ministry of National Defense of China(Grant No.613237)