期刊文献+

一类带有扩散项的病毒模型的动态分歧 被引量:2

Dynamic Bifurcation of a Viral Dynamics Model with Diffusion Responses
下载PDF
导出
摘要 本文利用线性全连续场谱理论,中心流形约化与非线性耗散系统吸引子分歧与跃迁理论研究了一类带有扩散项的病毒模型的动态分歧,该模型的分歧与区域Ω的选取有关,当∫_Ωψ_1~3dx≠0时,控制参数λ大于临界点时,方程从平衡态处发生分歧,原有的平衡态失稳,分歧出一个稳定的奇点吸引子,在λ小于临界点一侧分歧出唯一的鞍点;当∫_Ωψ_1~3dx=0时,本文给出了上述模型发生分歧的条件及临界点,当λ大于临界点,原有平衡态失稳,方程从平衡态处发生分歧,分歧出两个稳定奇点,当λ小于临界点时,方程从平衡态处分歧出两个鞍点.本文给出了在Dirichlet边界条件下,方程分歧出的稳定奇点吸引子和两个鞍点的表达式. With the guidance of spectrum theory of the linear completelycontinuous fields,center manifolds reduction method and transition theory of nonlinear dissipative system,this paper invests dynamic bifurcation of a class of viral dynamics model with diffusion term. The bifurcation of the model is associated with the region.Whenthe control parameteris greater than the critical point,the equation diverges a stable singular from the equilibrium state which becomes unstable,and the equation diverges one only saddle point as the control parameteris less than the critical point. This paper proposes the conditions of the divergence and its critical point: the equation diverges two stable singular points and two saddle points from the equilibrium state as the control parameteris greater than the critical pointand less than the critical point under some condition. The expression of the stable singular and two saddle points of the equation with Dirichlet boundary condition are given in this paper.
出处 《绵阳师范学院学报》 2016年第8期32-38,共7页 Journal of Mianyang Teachers' College
关键词 病毒模型 动态分歧 线性全连续场谱理论 中心流形约化 viral dynamics model dynamic bifurcation spectrum theory of the linear completely continuous fields center manifolds reduction method
  • 相关文献

参考文献3

二级参考文献28

  • 1赵春色,刘迎东.具有扩散项的SIR模型的动力学[J].北京交通大学学报,2007,31(3):84-86. 被引量:3
  • 2郑燕 魏纯辉.一类高次自催化反应扩散方程的动态分歧.四川大学学报:自然科学版,2009,:46-48.
  • 3Chow, S. N. & Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 251, Springer-Verlag, New York,1982.
  • 4Constantin, P. & Foias, C., The Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
  • 5Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin, 1981.
  • 6Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583,Springer-Verlag, Berlin, 1977.
  • 7Hurewicz, W. & Wallman, H., Dimension Theory, Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, N. J., 1941.
  • 8Ma, T. & Wang, S. H., Structural classification and stability of incompressible vector fields, Physica D, 171(2002), 107-126.
  • 9Ma, T. & Wang, S. H., Attractor bifurcation theory and its applications to Rayleigh-Benard convection,Communications on Pure and Applied Analysis, 2:3(2003), 591-599.
  • 10Ma, T. & Wang, S. H., Dynamic bifurcation and stability in the Rayleigh-Benard convection, Communication of Mathematical Sciences, 2:2(2004), 159-183.

共引文献18

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部