期刊文献+

片层Ti-55531合金的拉伸和扭转断裂失效行为 被引量:6

Tensile and Torsion Fracture Failure Behaviors of Ti-55531 Alloy with Lamellar Structure
原文传递
导出
摘要 通过室温静态拉伸和扭转试验,结合TEM、SEM等分析检测方法,系统研究了片层Ti-55531合金在拉伸和扭转载荷下的断裂失效行为。结果表明,片层Ti-55531合金在拉伸和扭转载荷下的断裂失效有显著的不同:拉伸变形受滑移、次生α_s的孪生及剪切共同控制,扭转变形主要受滑移和剪切控制,未发现有孪晶;拉伸断口较扭转断口陡峭,失效以微孔聚集为主,含少量穿晶解理和沿晶开裂的混合断裂机制;扭转断裂失效则以微孔聚集和剪切开裂为主,含部分穿晶解理的混合断裂机制。无论在拉伸还是扭转载荷下,片层Ti-55531合金的断裂失效面均由最大剪切应力产生,剪切力比正应力更易使片层Ti-55531合金损伤破坏。 Deformation and fracture behaviors of Ti-55531 alloy with lamellar microstructure(LM Ti-55531 alloy) were investigated during tensile and torsion tests at room temperature by transmission electron microscopy and scanning electron microscopy. Results indicate that loading modes have a significant influence on deformation and fracture mechanisms of LM Ti-55531 alloy. First of all, deformation mechanism of tensile tests is a mixed mode which combines dislocation slip, twinning of secondary αs phase and shear, while deformation of torsion tests is controlled predominantly by dislocation slips and shear. Secondly, fractographs of tensile and torsion tested specimens possess different morphologies. Fractographs of tensile specimens are cliffier than those of torsion specimens. The tensile sample shows a ductile failure, including microvoid coalescence, cleavage and inter-granular fracture mechanisms. The fracture of the torsion specimen is still a mixed mode type but with more shear dimples. No matter under tensile or torsion loading, the failure of LM Ti-55531 alloy is controlled by the highest shear stress. And the shear stress has much more effect on the failure of LM Ti-55531 alloy than the normal stress.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第8期2123-2127,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金资助(51471136) 陕西省科技统筹创新工程计划项目资助(2014KTCQ01-38) 陕西省重点科技创新团队计划(2012KCT-23)
关键词 Ti-55531钛合金 显微组织 力学性能 断裂失效 Ti-55531 alloys microstructure mechanical properties fracture failure
  • 相关文献

参考文献15

  • 1Shekhar S, Sarkar R, Kar S K et al. Materials & Design[J], 2015, 66:596.
  • 2HuZhizhong(胡志忠),WuYusheng(吴玉声),CaiHeping(蔡和平)et al.金属学报[J],1990(05):50.
  • 3Huang J, Wang Z, Xue K. Materials Science and Engineering A [J], 2011,528(29-30): 8723.
  • 4Huang J, Wang Z, Zhou J. Metallurgical and Materials Transactions A[J], 2011, 42(9): 2868.
  • 5Qin D, Lu Y, Guo D et al. Materials Science and Engineering A [J], 2013, 587:100.
  • 6Jones N G, Dashwood R J, Dye D et al. Materials Science and Engineering A [J], 2008, 490(1-2): 369.
  • 7Warchomicka F, Poletti C, Stockinger M. Materials Science andEngineetqngA[J], 2011,528(28): 8277.
  • 8Jones N G, Dashwood R J, Jackson Met al. Acta Materialia[J], 2009, 57(13): 3830.
  • 9Jones N G, Dashwood R J, Jackson Met aL Seripta Materialia [J]. 2009, 60(7): 571.
  • 10Nag S, Banerjee R, Srinivasan R et al. Acta Materialia[J], 2009, 57(7): 2136.

同被引文献64

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部