期刊文献+

三角代数上的非线性(m,n)-高阶导子

Nonlinear(m,n)-Higher Derivations On Triangular Algebras
原文传递
导出
摘要 设m和n是任意固定的非零整数且(m+n)(m-n)≠0,u是一个|mn(m+n)|-无挠的三角代数,D={d_k}_(k∈N)是u上的一个(m,n)-高阶可导映射.本文证明了:三角代数u上的每一个(m,n)-高阶可导映射都是高阶导子.作为结论的应用,得到了套代数或|mn(m+n)|-无挠的上三角分块矩阵代数上的每一个(m,n)-高阶可导映射都是高阶导子. Let m,n be non-zero integers with (m+n)(m-n)≠0, U an|mn(m+n)|-torsion free triangular algebra and D={dk}k∈N (m,n)-higher derivable map from U into itself. In this paper, it is shown that every (m,n)-higher derivable map on U is a higher derivation. As its application, we get that every (m,n)-higher derivable map on a nest algebra or an|mn(m+n)|-torsion free block upper triangular matrix algebra is a higher derivation.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第5期645-658,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金项目(11371233 11471199) 博士学科点专项科研基金(20110202110002)
关键词 三角代数 (m n)-导子 (m n)-高阶导子 Triangular algebra (m, n)-derivation (m, n)-higher derivation
  • 相关文献

参考文献12

  • 1An R. L., Hou J. C., Characterization of derivations on triangular rings:additive maps derivable at idempotents, Linear Algebra Appl., 2009, 431:1070-1080.
  • 2Bre?ar M., Vukman J., Jordan derivations on prime rings, Bull. Austral. Math. Soc., 1988, 37:321-322.
  • 3Cheung W. S., Mappings on triangular algebras, Ph. D. Dissertation, University of Victoria, 2000.
  • 4Cusack J. M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 1975, 53:321-324.
  • 5Ferrero M., Haetinger C., Higher derivations and a theorem by Herstein, Quaest. Math., 2002, 25:249-257.
  • 6Herstein I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc., 1957, 8:1104-1110.
  • 7Shen Q. H., Li J. K., Guo J. B., On (m, n)-derivations of some algebras, Demonstratio Math., 2014, 47:672-694.
  • 8Vukman J., On (m, n)-Jordan derivation and commutativity of prime rings, Demonstratio Math., 2008, 41:773-778.
  • 9Wu J., Lu S. J., Li P. T., Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc., 2002, 66:227-232.
  • 10Xiao Z. K, Wei F., Jordan higher derivations on triangular algebras, Linear Algebra Appl., 2010, 432:2615-2622.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部