期刊文献+

G-旋模型中由正规子群确定的观测量代数的结构

The structure of observable algebra in G-spin models determined by a normal subgroup
原文传递
导出
摘要 设G是有限群,H是G的正规子群.本文考虑G-旋模型中由H确定的场代数F_H以及Hopf C*-代数D(H;G)在F_H上的作用,其中D(H;G)是量子double D(G)的子代数.首先,给出D(H;G)-不变子空间,即观测量代数A_((H,G))的具体结构.然后,利用迭代扭曲张量积,证明观测量代数A_((H,G))与···■H■G■H■G■H■···是C*-同构的,其中G表示G上复值函数空间,H表示群代数. Let G be a finite group and H a normal subgroup. Starting from G-spin models, in which a field algebra 5vH w.r.t. H carries an action of the Hopf C*-algebra D(H; G), a subalgebra of the quantum double D(G), the concrete structure of the observable algebra A(H,G) is given, as D(H; G)-invariant subspace. Furthermore, using the iterated twisted tensor product, one can prove that the observable algebra -A(H,G) is C*-isomorphic to …… × H × G× H × G × H ×, where O denotes the algebra of complex functions on G, and H the group algebra.
出处 《中国科学:数学》 CSCD 北大核心 2016年第9期1267-1278,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10971011和11371222)资助项目
关键词 扭曲张量积 场代数 观测量代数 C*-归纳极限 twisted tensor products field algebras observable algebras C*-inductive limit
  • 相关文献

参考文献17

  • 1Doplicher S,Roberts J.Fields,statistics and non-abelian gauge group.Comm Math Phys,1972,28:331-348.
  • 2Jones V F R.Subfactors and Knots.Providence:Amer Math Soc,1991.
  • 3Szlachányi K,Vecsernyés P.Quantum symmetry and braided group statistics in G-spin models.Comm Math Phys,1993,156:127-168.
  • 4Dancer K A,Isaac P S,Links J.Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equations.J Math Phys,2006,47:103511-168.
  • 5Mason G.The quantum double of a finite group and its role in conformal field theory.In:London Mathematical Society Lecture Notes,212.Cambridge:Cambridge University Press,1995,405-417.
  • 6Bántay P.Orbifolds and Hopf algebras.Phys Lett B,1990,245:477-479.
  • 7Kassel C.Quantum Groups.GTM 155.New York:Springer,1995.
  • 8Nill F,Szlachányi K.Quantum chains of Hopf algebras with quantum double cosymmetry.Comm Math Phys,1997,187:159-200.
  • 9Xin Q L,Jiang L N.Symmetric structure of field algebra of G-spin models determined by a normal subgroup.J Math Phys,2014,55:091703-200.
  • 10Abe E.Hopf Algebras.Cambridge Tracts in Mathematics,No.74.Cambridge:Cambridge University Press,1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部