摘要
设G是有限群,H是G的正规子群.本文考虑G-旋模型中由H确定的场代数F_H以及Hopf C*-代数D(H;G)在F_H上的作用,其中D(H;G)是量子double D(G)的子代数.首先,给出D(H;G)-不变子空间,即观测量代数A_((H,G))的具体结构.然后,利用迭代扭曲张量积,证明观测量代数A_((H,G))与···■H■G■H■G■H■···是C*-同构的,其中G表示G上复值函数空间,H表示群代数.
Let G be a finite group and H a normal subgroup. Starting from G-spin models, in which a field algebra 5vH w.r.t. H carries an action of the Hopf C*-algebra D(H; G), a subalgebra of the quantum double D(G), the concrete structure of the observable algebra A(H,G) is given, as D(H; G)-invariant subspace. Furthermore, using the iterated twisted tensor product, one can prove that the observable algebra -A(H,G) is C*-isomorphic to …… × H × G× H × G × H ×, where O denotes the algebra of complex functions on G, and H the group algebra.
出处
《中国科学:数学》
CSCD
北大核心
2016年第9期1267-1278,共12页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:10971011和11371222)资助项目
关键词
扭曲张量积
场代数
观测量代数
C*-归纳极限
twisted tensor products field algebras observable algebras C*-inductive limit