期刊文献+

基于纹理特征的肝硬化MRI分期 被引量:4

Application of MRI in Cirrhosis Staging Based on Texture Features
下载PDF
导出
摘要 借助MRI影像的计算机辅助诊断已逐渐被应用于肝硬化分期研究中。为了提高分期的准确率,本文基于MR8滤波器组的纹理特征提取对肝硬化MRI分期,构建了一个适用于肝硬化MRI的T1、T2、动脉期、门静脉期和平衡期五种序列图像的分期系统。MR8滤波器组具有响应维度低和旋转不变性等优点,因此,本文利用MR8纹理特征构建纹理基元统计直方图将肝硬化分为三个阶段,分别为正常、早期和中晚期。与经典的灰度共生矩阵(GLCM)的纹理特征提取方法相比,MR8滤波器组纹理特征对每一序列肝硬化的分期准确率均高于GLCM方法,其中T2和平衡期,三个阶段的ROI分期准确率均达到100%;在此基础上,将五个序列的分类结果进行融合,最终病例的分期准确率也达到100%。 Computer aided diagnosis by means of MRI(Magnetic Resonance Imaging) has been gradually used in staging of cirrhosis. In this paper, MRI is applied in staging of cirrhosis based on MR8 filter banks. A staging system that applies to five sequences of liver MRI, including T1-weighted, T2-weighted, arterial phase, portal venous phase and equilibrium phase, is structured to improve staging accuracy. A significant advantage of MR8 filter banks is the rotation invariance. Therefore, MR8 filter banks are used to extract texture features and to construct statistical histogram of texton. The statistical histograms are then used to separate the MRI sequences into three stages: normal, early stage and the middle and advanced stage. The experimental results show that the method employed in this paper has an excellent performance of accuracy compared with the classic GLCM(Gray Level Co-occurrence Matrix) method. Especially in T2-weighted sequence and equilibrium phase sequence, the ROI in three stages of both sequences appears a 100% accuracy. On this basis, the ROI results of the five sequences are integrated into the final case accuracy results, which is also 100%.
作者 窦乐昕 刘惠
出处 《中国医疗设备》 2016年第8期21-25,共5页 China Medical Devices
基金 国家自然科学基金(61003175和81071127) 中央高校基本科研专项基金 山东省自然科学基金(ZR2014FM001) 山东省泰山学者计划(TSHW201502038)
关键词 MR8滤波器组 肝硬化MRI 纹理基元统计直方图 灰度共生矩阵 MR8 filter bank cirrhosis MRI statistical histogram of texton gray level co-occurrence matrix
  • 相关文献

参考文献16

  • 1霍玉洪,刘云.稀疏纹理分类的研究[J].合肥工业大学学报(自然科学版),2008,31(6):992-994. 被引量:1
  • 2刘延彤,李茂星,叶建军.计算机辅助诊断在医学影像诊断中的新进展[J].西北国防医学杂志,2006,27(6):450-451. 被引量:7
  • 3Xie J,Zhang L,You J,et al.Effective texture classification by texton encoding induced statistical features[J].Pattern Recogni,2015,48(2):447-457.
  • 4Bastidas-Rodriguez MX,Prieto-Ortiz FA,Espejo E.Fractographic classification in metallic materials by using computer vision[J].Eng Fail Anal,2016,59:23 7-252.
  • 5Kim KI,Jung K,Park SH,et al.Support vector machines for texture classification[J].IEEE TPattern Anal,2002,24(11): 1542- 1550.
  • 6Haralick RM,Shanmugam K,Dinstein I.Textural Features for Image Classification[J] .1EEE T Syst Man Cy-S, 1973,smc-3 (6):610-621.
  • 7Dharmagunawardhana C,Mahmoodi S,Bennett M,et al.Rotation invariant texture descriptors based on Gaussian Markov random fields for classification [J].Pattern Recogn Lett,2015,69:15-21.
  • 8Li W, Prasad S,Fowler JE.Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields[J]. 1EEE T Geosci Remote,2014,11 ( 1): 153-157.
  • 9Sun L,Wu Z,Liu J,et al.Supervised Spectral-Spatial Hyperspectral Image Classification With Weighted Markov Random Fields[J]. IEEE T Geosci Remote,2015,53(3): 1490-1503.
  • 10Leung T, Malik J.Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons[J]. lnt J Comput I~sion,2001,4 3(1):29-44.

二级参考文献24

共引文献6

同被引文献26

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部