期刊文献+

无源声呐多目标检测中反波束成形递推算法及其应用

Iterative inverse beamforming algorithm and its application in multiple targets detection of passive sonar
下载PDF
导出
摘要 随着声呐检测能力的提高,多目标干扰下微弱信号的检测问题日益突出。当声呐方位历程显示上出现多个干扰轨迹时,弱目标的检测显得十分困难。自适应噪声抵消(Adaptive Noise Canceling,ANC)技术为抑制多个干扰提供了理论基础,但是求解稳态最佳滤波矩阵存在着技术实现上的困难。本文提出用一种反波束成形(Inverse Beamforming,IBF)递推算法,在阵元域逐一抵消多个强干扰,从而增强并提取出微弱目标信号。文中给出了递推求解由逆矩阵所表达的最佳滤波矢量的理论推导和相应的公式。利用IBF算法处理海试数据得到了较好的结果,显著改善了强干扰下对微弱信号的检测,甚至在普通波束成形(CBF)中未能显示出来的信号都可以被检测出来。 With the increasing of detection ability of passive sonar, the weak signal detection problem in multiple interferences becomes more and more important. In the time/bearing record (TBR) display of sonar detection, when there exist multiple interferences traces, the identification of weak signal is difficult or impossible. The adaptive noise cancellation technique provides the theoretical basis of suppressing strong interferences. But the solution for finding the steady-state optimum filter matrix is quite difficult due to the real time calculation of inverse matrix of input data correlation matrix. The iterative inverse beamforming (IBF) algorithm for solving the optimum filter matrix is derived in this paper, by which, the optimum filter can be finally expressed as a series of sum of simple matrix of input data. Based on the Mgorithm proposed in this paper, some examples of at sea experiment are provided. The strong interferences are canceled and the weak signal is emerged, even it is not appeared in conventional beamforming (CBF) processing
出处 《声学学报》 EI CSCD 北大核心 2016年第5期744-749,共6页 Acta Acustica
基金 国家自然科学基金项目(11304343)资助
  • 相关文献

参考文献16

  • 1Estrada R F, Starr E A. 50 years of acoustical signal pro- cessing for detection: coping with the digital revolution. IEEE Annals of the History of Corrputing, 2005; 27(2): 65 -78.
  • 2National Research Council. Technology for tile United States Navy and Marine Corps, 2000-2035, Becoming a 21th century force. NA Press, USA, 1997.
  • 3Chen T. The past, present, and future of underwater acous- tic signal processing. IEEE Signal Processing, 1998; 15(4): 21- 53.
  • 4Kennedy F D Jr. Experimentation: the key to transforma- tion. Undersea Warfare, 2002; 5(1): 3-10.
  • 5Li Q H. Digital sonar design in underwater acoustics: prin- ciples and applications. Springer-Verleg, Berlin, Germany, 2012.
  • 6Rasmussen R A. Studies related to tile design and use of time/bearing sonar display. AD690540, 1968.
  • 7Ainslie M A. Principles of Sonar Performance Modeling. Springer Praxis, UK, 2010.
  • 8Li Q H, Schwartz S C. A Kind of pre-processing of robust wiener filter. Technical Report, Dept. of EECS, Princeton Univ. USA, 1985.
  • 9Cadzow J A. Multiple source location the signal subspace approach. IEEE Transactions on Acoustics Speech & Sig- nal Processing, 1990; 38(7): 1110-1125.
  • 10Satish A, Kaskyap R L. Multiple target tracking using max- imum likelihood principle. IEEE Transactions on Signal Processing, 1995; 43(7): 1677-1695.

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部