期刊文献+

边界元奇异与近奇异数值积分方法及其应用于大规模声学问题 被引量:8

Numerical quadrature for singular and near-singular integrals of boundary element method and its applications in large-scale acoustic problems
下载PDF
导出
摘要 提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极坐标变换法和PART方法(Projection and Angular&Radial Transformation)进行克服。与解析解和LMS Virtual.Lab商业软件的结果比较验证了方法的正确性,并对比分析了奇异积分与近奇异积分对计算精度的影响。采用低频快速多极子方法以加速常规边界元法的计算效率,计算分析了计算复杂度,并成功实现了34万自由度大规模问题的计算。结果表明,近奇异积分问题主要由超奇异核函数引起,对计算精度的影响不容忽略;快速多极边界元法的精度与常规边界元法一致,但计算复杂度要远低于后者。 The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEM (boundary element method) for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by both the simple method of polar transformation and the more complex method of PART (Projection and Angular & Radial Transformation). The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem of results show that, the near singularity is primarily introduced about 340,000 freedoms is implemented successfully. The by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower
出处 《声学学报》 EI CSCD 北大核心 2016年第5期768-775,共8页 Acta Acustica
基金 国家自然科学基金项目(11304344 11404364) 中国科学院声学研究所青年人才领域前沿和知识创新工程重要方向项目资助
关键词 近奇异积分 数值积分方法 边界元方法 声学问题 快速多极边界元法 VIRTUAL.LAB 快速多极子方法 HADAMARD Acoustic fields Acoustic wave scattering Computational complexity Numerical methods Problem solving Sailing vessels
  • 相关文献

参考文献24

  • 1Schenck H A. Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am., 1968; 44(1): 41-58.
  • 2Burton A J, Miller G F. The application of integral equa- tion methods to the numerical solution of some exterior boundary-value problems. Proc. R. Soc. London Set., 1971; A323:201-210.
  • 3Chien C C, Rajiyah H, Atluri S N. An effective method for solving the hypersingular integral equations in 3-D acous- tics. J. Acoust. Soc. Am., 1990; 88(2): 918-937.
  • 4Mitzner K M. Acoustic scattering from an interface be- tween media of greatly different density. J. Math. Phys., 1966; 7:2053-2060.
  • 5Stallybrass M P. On a pointwise variational principle for the approximate solution of linear boundary value prob- lems. J. Math. Mech., 1967; 16(11): 1247-1286.
  • 6Meyer W L, Bell W A, Stallybrass M P, Zinn B T. Bound- ary integral solutions of three dimensional acoustic radia- tion problems. J. Sound Vib., 1978; 59(2): 245-262.
  • 7Terai T. On calculation of sound field around three- dimensional objects by integral equation methods. J. Sound. Vib., 1980; 69:71-100.
  • 8Liu Y J, Rizzo F J. A weakly-singular form of the hypersin- gular boundary integral equation applied to 3-D acoustic wave problems. Comput. Methods Appl. Mech. Eng., 1992; 96:271- 287.
  • 9Kirkup S. The boundary element method in acoustics. Published in electronic format, 2007.
  • 10Wolf W R, Lele S K. Fast multipole burton-miller bound- ary element method for two and three-dimensional acoustic scattering. J. Aerosp. Technol. Manag., 2012; 4(2): 145- 161.

二级参考文献27

  • 1李慧剑,申光宪,刘德义.轧机油膜轴承锥套微动损伤机理和多极边界元法[J].机械工程学报,2007,43(1):95-99. 被引量:8
  • 2CISKOWSKI R D, BREBBIA C A. Boundary element methods in acoustics[M]. Southampton: Computational Mechanics Publications and Elsevier Applied Science, 1991.
  • 3XIANG Changle, WANG Wenping, LIU Hui. Numerical simulation of sound radiation on gearbox's housing[J]. Chinese Journal of Mechanical Engineering, 1998, 11(4): 249-256.
  • 4WU Chengjun, CHEN Hualing, HUANG Xieqing. Theoretical prediction of sound radiation from a heavy fluid-loaded cylindrical coated shell[J]. Chinese Journal ofMechanicalEngineering, 2008, 21(3): 26-30.
  • 5ROKHLIN V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics, 1985, 60(2): 187-207.
  • 6GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348.
  • 7YOSHIDA K. Application s of fast multipole method to boundary integral equation method[D]. Kyoto: Kyoto University, 2001.
  • 8CHEW W C, CHAO H Y, CUI T J, et al. Fast integral equation solvers in computational electromagnetics of complex structures[J]. Engineering Analysis with Boundary Element, 2003, 27(8): 803-823.
  • 9LIU Y J. A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems[J]. International Journal for Numerical Methods in Engineering, 2006, 65(6): 863-881.
  • 10ROKHLIN V. Diagonal forms of translation operators for the Helmholtz equation in three dimensions[J]. Applied and Computational Harmonic Analysis, 1993, 1(1): 82-93.

共引文献18

同被引文献57

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部