期刊文献+

随机傅里叶特征空间中高斯核支持向量机模型选择 被引量:10

Model Selection for Gaussian Kernel Support Vector Machines in Random Fourier Feature Space
下载PDF
导出
摘要 模型选择是支持向量机(support vector machines,SVMs)学习的关键问题.标准支持向量机学习本质上是求解一个凸二次优化问题,求解的时间复杂度为数据规模的立方级,而经典的模型选择方法往往需要多次训练支持向量机,这种模型选择方法对于中等规模的支持向量机学习计算代价已较高,更难以扩展到大规模支持向量机学习.基于高斯核函数的随机傅里叶特征近似,提出一种新的、高效的核支持向量机模型选择方法.首先,利用随机傅里叶特征映射,将无限维隐式特征空间嵌入到一个相对低维的显式随机特征空间,并推导在2个不同的特征空间中分别训练支持向量机所得到的模型的误差上界;然后,以模型误差上界为理论保证,提出随机特征空间中核支持向量机的模型选择方法,应用随机特征空间中的线性支持向量机来逼近核支持向量机,计算模型选择准则的近似值,从而评价所对应的核支持向量机的相对优劣;最后,在标杆数据集上验证所提出方法的可行性和高效性.实验结果表明,所提出的模型选择方法与标准交叉验证方法的测试精度基本相当,但可显著地提高核支持向量机模型选择效率. Model selection is very critical to support vector machines (SVMs). Standard SVMs typically suffer from cubic time complexity in data size since they solve the convex quadratic programming problems. However, it usually needs to train hundreds/thousands of SVMs for model selection, which is prohibitively time-consuming for medium-scale datasets and very difficult to scale up to large-sca kernel, a nove e problems. In this paper, and efficient approach to random Fourier feature mapping is used to explicit random feature space. An error bo by using random Fourier features to approximate Gaussian model selection of kernel SVMs is proposed. Firstly, the embed the infinite-dimensional implicit feature space into an und between the accurate model obtained by training kernel SVM and the approximate one returned by the linear SVM in the random feature space is derived. Then, in the random feature space, a model selection approach to kernel SVM is presented. Under the guarantee of the model error upper bound, by applying the linear SVMs in the random feature space to approximate the corresponding kernel SVMs, the approximate model selection criterion can be efficiently calculated and used to assess the relative goodness of the corresponding kernel SVMs. Finally, comparison experiments on benchmark datasets for cross validation model selection show the proposed approach can significantly improve the efficiency of model selection for kernel SVMs while guaranteeing test accuracy.
作者 冯昌 廖士中
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第9期1971-1978,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61170019)~~
关键词 模型选择 支持向量机 随机傅里叶特征 高斯核 交叉验证 model selection support vector machines (SVMs) random Fourier features Gaussiankernel cross validation
  • 相关文献

参考文献25

  • 1Vapnik V N. Statistical I.earning Theory [M]. New York: John Wiley I Sons, 1998.
  • 2Sch61kopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization,and Beyond [M]. Cambridge, MA: MIT Press, 2002.
  • 3Chapelle O, Vapnik V. Model selection for support vector machines [C] //Advances in Neural In{ormation Processing Systems 12. Cambridge, MA: MIT Press, 2000:230-236.
  • 4Guyon I, Saffari A, Dror G, et al. Model selection: Beyond the Bayesian/frequentist divide [J]. Journal o{ Machine Learning Research, 2010, 11:61-87.
  • 5Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM hyperparameters [J]. Neurocomputing, 2003, 51:41-59.
  • 6Chapelle O, Vapnik V N, Bousquet O, et ai. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1/2/3): 131-159.
  • 7Vapnik V N, Chapelle O. Bounds on error expectation for support vector machines [J]. Neural Computation, 2000, 12 (9) : 2013-2036.
  • 8Platt J C. Fast Training of support vector machines using sequential minimal optimization [C] //Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999:185-208.
  • 9Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms [C] //Proc of the 21st Int Conf on Machine I.earning. New York: ACM, 2004: 919-926.
  • 10Joachims T. Training linear SVMs in linear time [C] //Proc of the 12th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2006:217-226.

二级参考文献44

  • 1Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer, 2000.
  • 2Guyon I, Saffari A, Dror G. Model selection: Beyond the Bayesian/frequent divide[J]. Journal of Machine Learning Research, 2010, 11: 61-87.
  • 3Duan K, Keerthi S, Poo A. Evaluation of simple performance measures for tuning SVM hyperparameters [J]. Neurocomputing, 2003, 51: 41-59.
  • 4Huang C, Wang C. A GA-hased feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2):231-240.
  • 5Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters [J]. Neuroeomputing, 2005, 64:107-117.
  • 6Vapnik V, Chapelle O. Bounds on error expectation for support vector machines [J]. Neural Computation, 2000, 12 (9) : 2013-2036.
  • 7Chapelle O, Vapnik V, Bousquet O. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1): 131-159.
  • 8Xu Z, Dai M, Meng D. Fast and effcient strategies for model selection of Gaussian support vector machine [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(5) : 1292-1307.
  • 9Jia Lei, Liao Shizhong, Ding Lizhong. Learning with uncertain kernel matrix set[J]. Journal of Computer Seienee and Technology, 2010, 25(4): 709-727.
  • 10Papadimitriou C, Raghavan P, Tamaki H. Latent semantic indexing: A probabilistic analysis [J]. Journal of Computer and System Sciences, 2000, 61(2): 217-235.

共引文献13

同被引文献16

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部