期刊文献+

任务调度算法中新的自适应惯性权重计算方法 被引量:27

A Novel Computation Method for Adaptive Inertia Weight of Task Scheduling Algorithm
下载PDF
导出
摘要 粒子群算法(particle swarm optimization,PSO)是解决云计算环境中工作流系统的任务调度优化问题的主流智能算法.然而基于传统自适应惯性权重的粒子群任务调度算法易陷入局部最优,导致调度方案的执行时间与费用较高.因此,通过改进单个粒子的成功值计算方法,提出了一种新的自适应惯性权重计算方法 NAIWPSO(new adaptive inertia weight based particle swarm optimization).该方法通过比较每个粒子的适应度与全局最优值,可以更加精确描述粒子状态,进而提高了权重的自适应性.在新惯性权重基础上,提出了一种解决云工作流系统中任务调度优化问题的改进粒子群算法.新权重可以更准确的调整粒子速度,使算法更好地平衡粒子全局与局部搜索,避免陷入局部最优,获得执行费用更优的调度方案.实验表明,与5种已有惯性权重算法比较,新算法收敛稳定、适应度最低、执行费用平均减少18%. Particle swarm optimization (PSO) is a primary intelligence algorithm to solve task scheduling problem for workflow systems in cloud computing. The inertia weight is one of the most important parameters to achieve a balance between the global and local search in PSO algorithm. However, traditional adaptive inertia weight-based PSO task scheduling algorithms usually get local optimal and cause longer execution time and higher cost for scheduling plan. The traditional adaptive inertia weight does not comprehensively represent the information of particle position, and then cannot make a suitable balance between global and local search. Hence, a novel computation method for adaptive inertia weight is proposed to improve the computation method of success value of each particle. This method shows the position state of each particle more accurately and then improves the adaptability of inertia weight by comparing the fitness of each particle with the global best particle. Then a new inertia weight-based PSO algorithm is presented to solve task scheduling problem for cloud workflow systems. The novel weight can adjust the particle velocity more correctly so that the algorithm avoids premature convergence by a proper balance between local and global search. Comparing our new adaptive inertia weight with other five traditional inertia weights (viz. constant, index decreasing, linear decreasing, random, and adaptive inertia weight), the results show that our new adaptive inertia weight-based scheduling algorithm can always achieve stable convergence speed, the optimal fitness and execution cost of the scheduling plan (i. e. roughly 18% reduction of execution cost).
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第9期1990-1999,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61300169) 安徽省教育厅自然科学研究重点项目(KJ2016A024)~~
关键词 云计算 工作流 任务调度 粒子群算法 惯性权重 cloud computing workflow task scheduling particle swarm optimization (PSO) inertiaweight
  • 相关文献

参考文献26

  • 1Dellman E, Gannon D, Shields M, et al. Workflows and e-science: An overview of workflow system features and capabilities [J]. Future Generation Computer Systems, 2008, 25(5): 528-540.
  • 2Netjinda N, Sirinaovakul B, Achalakul T. Cost optimal scheduling in IaaS for dependent workload with particle swarm optimization [J]. The Journal of Supercomputing, 2014, 68(3): 1579-1603.
  • 3师雪霖,徐恪.云虚拟机资源分配的效用最大化模型[J].计算机学报,2013,36(2):252-262. 被引量:78
  • 4王鹏,黄焱,李坤,郭又铭.云计算集群相空间负载均衡度优先调度算法研究[J].计算机研究与发展,2014,51(5):1095-1107. 被引量:24
  • 5王强,李雄飞,王婧.云计算中的数据放置与任务调度算法[J].计算机研究与发展,2014,51(11):2416-2426. 被引量:22
  • 6Lee Y, Han H, Zomaya A, et al. Resource-efficient workflow scheduling in clouds [J]. Knowledge-Based Systems, 2015, 80(5) : 153-162.
  • 7Yu J, I3uyya R, Tham C. Cost-based scheduling of scientific workflow applications on utility grids [C] //Proc of the /st IEEE Int Conf on e-Science and Grid Computing. Piscataway, NJ IEEE, 2005:1-8.
  • 8Wieczorek M, Prodan R, Fahringer T. Scheduling of scientific workflows in the ASKALON grid environment [J]. ACM SIGMOD Record, 2005, 34(3) : 56-62.
  • 9Xu J, Liu C, Zhao X. Resource planning for massive number of process instances [C] //Proc of the Move to Meaningful Internet Systems OTM2009. Berlin: Springer, 2009: 219- 236.
  • 10Wu Z, Liu X, Ni Z, et al, A market-oriented hierarchical scheduling strategy in cloud work{low systems [J]. The Journal of Supercomputing, 2013, 63(1). 256-298.

二级参考文献40

  • 1Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 2Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 3Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 4Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 5Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 6Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 7Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 8Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.
  • 9Beltrame G, Brandolese C, Fornaciari W, Salice F, Sciuto D, Trianni V. Dynamic modeling of inter-instruction effectsfor execution time estimation//Proceedings of the 14th Inter- national Symposium on System Synthesis. Canada, 2001: 136-141.
  • 10Kelly F P, Maulloo A K, Tan D K H. Rate control for com- munication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 1998, 49(3): 237-252.

共引文献119

同被引文献176

引证文献27

二级引证文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部