期刊文献+

CoMo/Al2O3催化剂上FCC汽油加氢脱硫活性研究 被引量:1

Research of hydrodesulfurization activity of FCC gasoline on CoMo/Al_2O_3 catalysts
原文传递
导出
摘要 采用等体积浸渍法合成了Co/Mo/Al_2O_3催化剂,采用N_2吸附-脱附、扫描电镜(SEM)对催化剂进行了表征,针对CoMo/Al_2O_3催化剂,改变温度和空速进行催化裂化(FCC)汽油加氢脱硫评价试验,考察了FCC汽油中单环噻吩类和苯并噻吩类硫化物的脱硫率,发现了加氢脱硫活性与硫化物的电子云密度相关联的规律:硫化物的电子云密度越高,则加氢脱硫转化率越高,硫化物越容易脱除。采用Gaussian 03程序中的密度泛函理论(DFT)方法,在B3LYP/6-31G水平上对噻吩及其衍生物的分子结构进行了全优化计算,获得了噻吩及其衍生物中双键键级及硫原子的电负性,验证了试验中硫化物加氢脱硫和其电子云密度相关联的规律。 Co/Mo/Al2O3 catalyst was prepared by impregnation method and characterized by N2 adsorption-desorption and scanning electron microscope (SEM). The hydrodesulfurization conversion of the monoeyclic thiophene and benzothiophene on Co/Mo/Al2O3 catalysts was investigated at different temperature and space velocity. The rule of the hydrodesulfurization on the Co/Mo catalyst was found as follows: The hydrodesulfurization activity of sulfide compounds was related to their electron cloud density, the higher electron cloud density of the reactant molecules were, the higher the conversion of the hydrodesulfurization was. The molecular structure of thi- ophenic compounds were studied by density functional theory (DFT) at the B3LYP/6-31G level to obtain the corresponding atom charges and the order of double bond. The result was consistent with the previous experiment.
出处 《计算机与应用化学》 CAS 2016年第8期920-924,共5页 Computers and Applied Chemistry
基金 中国石油天然气股份有限公司科学研究与技术开发项目(合同号:2010E-1902)
关键词 噻吩类硫化物 加氢脱硫 密度泛函理论 电子云密度 thiophenic compounds hydrodesulfurization density function theory (DFT) electron cloud density
  • 相关文献

参考文献14

  • 1Lasa H D, Enriquez R H, Tonetto G Catalytic desulfurization of gasoline via dehydrosulfidation. Industrial & Engineering Chemistry Research, 2006, 45(4): 1291-1299.
  • 2Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel, 2003, 82(6): 607-631.
  • 3Mey D, Brunet S, Canaff C. HDS of a model FCC gasoline over a sul- tided CoMo/Al2O3 catalyst: effect of the addition of potassium. Journal of Catalysis, 2004, 227(2): 436-447.
  • 4Shih S S, Mizrahi S, Green L A. Deep desulfurization of distillates. Industrial & Engineering Chemistry Research, 1992, 31(4): 1232-1235.
  • 5Brunet S, Mey D, Perot G. On the hydrodesulfurization of FCC gaso- line: a review. Applied Catalysis A: General, 2005, 278(2): 143-172.
  • 6Ghosh P, Andrew A T, Quann R J. Detailed kinetic model for the hy- dro-desulfurization of FCC naphtha. Energy & Fuels, 2009, 23(12): 5743-5759.
  • 7Can F, Travert A, Ruanx V. FCC gasoline sulfur reduction additives: mechanism and active sites. Journal of Catalysis, 2007, 249(1): 79-92.
  • 8Fan Y, Lin X Y, Shi G Realumination of dealuminated HZSM-5 zeolite by citric acid treatment and its application in preparing FCC gasoline hydro-upgrading catalyst. Microporous and Mesoporous Materials, 2007, 98(1-3): 174-181.
  • 9Fontaine C, Romero Y, Daudin A. Insight into sulphur compounds and promoter effects on molybdenum-based catalysts for selective HDS of FCC gasoline. Applied Catalysis A: General, 2010, 388(1-2): 188-195.
  • 10Mizutani H, Korai Y, Mochida I. Behavior of sulfur species present in atmospheric residue in fluid catalytic cracking. Fuel, 2007, 86(17-18): 2898-2905.

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部