期刊文献+

流速对含不凝气体的蒸汽冷凝的影响 被引量:8

Effect of Velocity on Steam Condensation with Non Condensable Gas
原文传递
导出
摘要 蒸汽在安全壳内壁面上的冷凝是事故发生后安全壳内的气体向壳壁传热的主要方式,是影响钢制非能动安全壳压力响应的重要因素。针对事故后核电厂安全壳内的事故工况条件,在较宽的参数范围内开展了蒸汽冷凝传热过程的试验研究。试验压力为0.11~0.5 MPa(d),主流空气质量分数为29%~78%、壁面过冷度为26~60℃,混合气体平均流速0.4~1.9 m/s。试验结果表明:在0.9 m/s以下的低流速范围内,试验数据与经验关系式的计算结果符合较好;流速高于0.9 m/s时,流速成为影响含有不凝性气体的蒸汽凝结传热的主要因素之一;主流空气质量分数较低时,流速对含有不凝性气体蒸汽冷凝的传热系数的影响更加显著;对于伴有蒸汽冷凝的对流换热过程,由自然对流向混合对流转变的判据与单相对流换热过程不同。 Condensation on the containment structures during an accident is one of the critical thermal-hydraulic phenomena that would affect the pressure in the containment vessel. Experiment facility was set up to investigate the steam condensation with non condensable gas on a cold plate, focusing on the conditions in the containment. In the experiment, pressure range is 0.11 - 0.5 MPa; mass fraction of air in the bulk flow is 29%- 78%; the wall sub-cooling is 26-60℃. Gas velocity varies from 0.4 to 1.9 m/s. The experimental result agrees with empirical correlations when the gas velocity is up to 0.9 m/s. Gas velocity becomes one of the primary factors influencing the steam condensation in non-condensable gas with higher gas velocity. The promotion effect on the heat transfer of increasing velocity is more significant when the mass fraction of non-condensable gas is lower. The transition criterion from free to mixed convection for steam-gas flow condensing should be different from that of the single phase heat transfer.
出处 《核动力工程》 EI CAS CSCD 北大核心 2016年第4期15-18,共4页 Nuclear Power Engineering
基金 国家科技重大专项(2011ZX06002-005)
关键词 冷凝 不凝性气体 流速 试验 非能动安全壳 Condensation, Non condensable gas, Velocity, Experiment, Passive containment
  • 相关文献

参考文献17

  • 1Green J, Almenas K. An overview of the primary parameters and methods for determining condensation heat transfer to containment structures [J]. Nuclear Safety, 1996, 37(1):26-47.
  • 2Uchida H, Oyama A, Togo Y. Evaluation of post-incident cooling systems of light water power reactors[C]. Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy New York: United Nations, 1965.
  • 3Tagami T. Interim report on safety assessments and facilities establishment project for June 1965, No I[R].Japanese Atomic Energy Research Agency, 1965.
  • 4Dehbi A A. Analytical and Experimental Investigation of the Effects of Non-condensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions[D]. Boston, M.I.T. Department of Nuclear Engineering, 1990.
  • 5Anderson M H, Herranz L E, Corradini M L. Experi- mental analysis of heat transfer within the AP600 containment under postulated accident conditions[J]. Nuclear Engineering and Design, 1998,185, 153-172.
  • 6Liu H, Todreas N E, Driscoll M J. An experimental investigation of a passive cooling unit for nuclear plant containment[J]. Nuclear Engineering and Design, 2000,199, 243 -255.
  • 7宿吉强,孙中宁,高力,范广铭.含不凝性气体蒸汽凝结换热的壁面过冷度分析[J].哈尔滨工程大学学报,2013,34(12):1551-1555. 被引量:2
  • 8Huhtiniemi I K, Corradini M L. Condensation in the Presence of Noncondensable Gases[J]. Nuclear Engineering and Design, 1993, 141:429-446.
  • 9Ambrosini W, Forgione N, Manfredini A, et al. On various forms of the heat and mass transfer analogy: Discussion and application to condensation experiments [J]. Nuclear Engineering and Design, 2006, 236(9): 1013-1027.
  • 10Cheng X, Bazin P, Comet P, et al. Experimental data base for containment thermalhydraulic analysis[J]. Nuclear Engineering and Design, 2001, 204:267-284.

二级参考文献10

  • 1ROSA J C. Review on condensation on the containment structures[J]. Progress in Nuclear Energy, 2009, 51(1) : 32-66.
  • 2KANG Y M, PARK G C. An experimental study on evapo- rative heat transfer coefficient and applications for passive cooling of AP600 steel eontainment[ J ]. Nuclear Engineer- ing and Design, 2001, 204(1-3) : 347-359.
  • 3GANGULI A, PATEL A G, MAHESHWARI N K, et al. Theoretical modeling of condensation of steam outside dif- ferentvertical geometries (tube, fiat plates) in the presence of noneondensable gases like air and helium [ J ]. Nuclear Engineering and Design, 2008, 238(9) : 2328-2340.
  • 4KAGEYAMA T, PETERSON P F, SCHROCK V E. Diffu- sion layer modeling of condensation in vertical tubes with noncondensable gases [ J ]. Nuelear Engineering and De- sign, 1993, 141(1/2) : 289-302.
  • 5UCHIDA H, OYAMA A, TOGO Y. Evaluation of post-inci- dent cooling systems of light-water power reactors [ C ]// Proceedings of International Conference on Peaceful Uses of Atomic Energy. Tokyo, Japan, 1965 : 93-102.
  • 6TAGAMI T. Interim report on safety assessments and facili- ties establishment project for June [ C ]//Japanese Atomic Energy Research Agency. Tokyo, Japan, 1965:35-46.
  • 7LIU H, TODREAS N E, DRISCOLL M J. An experimental investigation of a passive cooling unit for nuclear plant con- tainment [ J]. Nuclear Engineering and Design, 2000, 199 (3) :243-255.
  • 8DEHBI A A. Analytical and experimental investigation of the effects of non-eondensable gases on steam condensation un- der turbulent natural convection conditions[D]. Cam- bridge: Massachusetts Institute of Technology, 1990: 1- 118.
  • 9KANG H C, KIM M H. Effect of non-condensable gas and wavy interface on the condensation heat transfer in a nearly horizontal plate[ J ]. Nuclear Engineering and Design, 1994, 149 (1-3) : 313-321.
  • 10PETERSON P F. Theoretical basis for the Uchida correla- tion for condensation in reactor containments [ J ]. Nuclear Engineering and Design, 1996, 162 (2/3) : 301-306.

共引文献1

同被引文献53

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部