期刊文献+

2×2棒束通道格架搅混翼横向流场PIV实验研究 被引量:5

PIV Experiment Research of Lateral Flow Field in 2×2 Rod Bundles Channel with Mixing Vane Grids
原文传递
导出
摘要 以2×2放大棒束通道格架模型为基础,利用粒子图像测速(PIV)对格架搅混翼引起的燃料组件棒束通道内横向流场特性进行实验研究。测量流体经过格架搅混翼后不同位置的横向速度发展情况,比较折弯角分别为20°、25°、30°、35°、40°和45°时横向流场的变化情况,给出雷诺数对横向流场的影响。获得4个典型雷诺数(Re为33000、36000、40000、45000)下的流场特性。结果表明,Re和搅混翼折弯角度的改变,都会显著影响棒束通道内横向流动。 Based on the scale-up model of 2×2 rod bundle channel, an experimental study of effects of mixing vane on lateral flow field in rod bundle channels of fuel assembly was performed with particle image velocimetry (PIV). The development of lateral flow velocity at different places after the fluid passing through mixing vanes was investigated. The effect of Reynolds number on the lateral flow field was gained by comparing the changes of the flow fields when bending angles equal 200,25°, 30°, 35°, 40° and 45°. The characteristics of flow fields under four typical Reynolds numbers, which were 33000, 36000, 40000 and 45000, were gained. The results show that both of Reynolds number and bending angle can significantly influence the lateral flow in the rod bundle channel.
出处 《核动力工程》 EI CAS CSCD 北大核心 2016年第4期133-137,共5页 Nuclear Power Engineering
关键词 格架 搅混翼 棒束通道 PIV 流场 Grids, Mixing vane, Rod bundle channel, Particle image velocimetry (PIV), Flow field
  • 相关文献

参考文献10

  • 1lkeda K, Hoshi M. Development of rod-embedded fiber LDV to measure velocity in fuel rod bundles [J]. Journal of Nuclear Science and Technology, 2006, 43: 150-158.
  • 2Mcclusky H L, Holloway M V, Beasley D E, et al. Development of swirling flow in a rod bundle subchannel[J]. Journal of Fluids Engineering, 2002, 124(3):747-755.
  • 3McClusky H L, Holloway M V, Conover T A, et al. Mapping of the lateral flow field in typical subchannels of a support grid with vanes [J]. ASME Journal of Fluids Engineering,2003,125(6):987-996.
  • 4熊万玉,陈炳德,肖泽军,王小军.定位格架对流场影响的可视化实验研究[J].核动力工程,2004,25(3):218-221. 被引量:6
  • 5Conner M E, Baglietto E, Elmahdi A M. CFD metho- dology and validation for single-phase flow in PWR fuel assemblies[J]. Nuclear Engineering & Design, 2010, 240(9):2088-2095.
  • 6Dominguez-Ontiveros E E, Hassan Y A. Non-intrusive experimental investigation of flow behavior inside a 5x5 rod bundle with spacer grids using PIV and MIR[J]. Nuclear Engineering & Design, 2009, 239(5):888-898.
  • 7Dominguez-Ontiveros E E, Hassan Y A, Conner M E, et al. Experimental benchmark data for PWR rod bundle with spacer-grids[J]. Nuclear Engineering & Design, 2012, 253(12):396-405.
  • 8Conner M E, Hassan Y A, Dominguez-Ontiveros E E. Hydraulic benchmark data for PWR mixing vane grid[J]. Nuclear Engineering & Design, 2013, 264(11):97-102.
  • 9Mcclusky H L, Beasley D E, Holloway M V, et al. The effect of support grid features on local, single-phase heat transfer measurements in rod bundles[J]. Transactions of the Asme Serie C Journal of Heat Transfer, 2003, 126(1): 43-53.
  • 10Holloway M V, Conover T A, Mcclusky H L, et al. The Effect of Support Grid Design on Azimuthal Variation in Heat Transfer Coefficient for Rod Bundles[J]. Journal of Heat Transfer, 2005, 127(6): 598-605.

二级参考文献1

  • 1熊万玉.[D].中国核动力研究设计院,2000.

共引文献5

同被引文献36

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部