期刊文献+

加热上升混合对流传热实验研究 被引量:1

Experimental Research of Heated Upward Mixed Convective Heat Transfer
原文传递
导出
摘要 在加热上升混合对流中,浮升力的存在显著改变了速度分布和切压力分布,使边界层趋于层流化和充分发展湍流起始点的延后,并使传热系数表现出由弱化、恢复再强化的过程。本研究在中压下不同直径的竖直加热圆管上进行了纯蒸汽的强迫对流传热实验,也在超临界压力下不同直径的加热圆管上进行水的强迫对流和自然循环传热实验。研究表明:随着浮升力参数的增大,传热逐渐弱化;在浮升力参数达到一定值时传热系数达到最小值,随后逐渐恢复,并最终出现强化。在实验数据基础上提出了加热上升混合对流的传热关系式。 In the heated upward mixed convection, the distributions of velocity and shear-stress vary significantly due to the existing of buoyancy force, leading to the laminarization of boundary layer and the delay of the onset of fully developed turbulent convection, and the heat transfer coefficient experiences a process from the deterioration, recovery and enhancement. The present investigation deals with the experiments in tubes of different diameters for the forced convection of pure steam and the forced convection and natural circulation of supercritical water. The research indicates that as the buoyancy force increases, the heat transfer deteriorates and reaches a minimum at a certain value of buoyancy force, then it turns to recovery and enhancement finally. The present investigation presents a correlation of heat transfer coefficients based on the experimental data for heated upward flow.
出处 《核动力工程》 EI CAS CSCD 北大核心 2016年第4期138-141,共4页 Nuclear Power Engineering
基金 科技部国际合作专项(2012DFG61030)
关键词 混合对流 浮升力 传热恶化 传热强化 反应堆安全 Mixed convection, Buoyancy force, Deterioration, Enhancement, Reactor safety
  • 相关文献

参考文献2

二级参考文献16

  • 1Hendricks, R. C., Simoneau, R. J., and. Mith, S. R. V. 1969. Survey of Heat Transfer to Near Critical Fluids. New York: Plenum Press.
  • 2Jackson, J. D., Hall, W. B., Fewster, J., Watson, A., and Watts, M. J. 1975. Review of Heat Transfer to Supercritical Pressure Fluids. Design report.
  • 3Bishop, A. A., Sandberg, R. O., and Tong, L. S. 1964. "Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures." WCAP-2056 PART IV.
  • 4Yamagata, K., Nishigawa, K., Hasegawa, S., Fuju, T., and Yoshida, S. 1972. "Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes." Int. J. of Heat and Mass Transfer 15 ( 12): 2575-93.
  • 5Swenson, H. S., Carver, J. R., and Kakarala, C. R. 1965. "Heat Transfer to Supercritical Water in Smooth-Bore Tubes." A.S.ME. Journal of Heat Transfer 87 (4): 477-84.
  • 6Watts, M. J., and Chou, C. T. 1982. "Mixed Convection Heat Transfer to Supercritical Pressure Water." In Proceedings of 7th International Heat Transfer Conference, 495-500.
  • 7Cheng, X., Yang, Y. H., and Huang, S. F. 2009. "A Simple Heat Transfer Correlation for SC Fluid Flow in Circular Tubes." In Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 1-11.
  • 8Zahlan, H., Groeneveld, D. C., Tavoularis, S., Mokry, S., and Pioro, I. 2011. "Assessment of Supercritical Heat Transfer Prediction Methods." Presented at the 5th Int. Sym. SCWR (ISSCWR-5), Vancouver, Canada.
  • 9Mokry, S., Gospodinov, Y. E., Pioro, I., and Kirillov, P. "Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes." In Proceedings of the 17th International Conference on Nuclear Engineering, 747-54.
  • 10Pioro, I., and Mokry, S. 2011. "Heat Transfer to Fluids at Supercritical Pressures." In Heat Transfer--Theoretical Analysis, Experimental Investigations and Industrial Systems, edited by Belmiloudi, A. Rijeka: InTech.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部