期刊文献+

广西巴马小型猪SLC30-A8基因克隆及组织表达差异分析

Cloning and Tissue Differential Expression Analysis of SLC30-A8 Gene from Guangxi Bama Mini-pig
原文传递
导出
摘要 本研究的目的是克隆广西巴马小型猪SLC30-A8基因,并确定各组织的表达量。利用RT-PCR的方法扩增并克隆SLC30-A8基因;荧光定量PCR检测SLC30-A8基因在12月龄广西巴马小型猪心脏、肝脏、脾脏、肺脏、肾脏、胰腺、小肠和脂肪中的表达。结果显示,成功克隆广西巴马小型猪SLC30-A8基因CDS区全长1 110 bp,荧光定量PCR结果显示SLC30-A8基因在12月龄广西巴马小型猪胰腺组织中表达量最高,其次是心脏、脾脏,在肺脏、小肠以及脂肪组织中几乎不表达。本研究成功克隆了广西巴马小型猪SLC30-A8基因并确定在胰腺组织中表达最高。该研究将为下一步研究SLC30-A8基因在糖尿病的发生过程中对糖代谢的作用奠定基础。 The purpose of this study is to clone Guangxi Bama mini-pig SLC30-A 8 gene, and to determine the expression level of the tissues. Using the method of RT-PCR to amplificate and clone SLC30-A 8 gene; fluor- escence quantitative PCR to detect the expression of SLC30-A8 gene in the heart, liver, spleen, lung, kidney, pancreas, small intestine and fat of Guangxi Bama mini-pig in 12 months of age. The results showed that the full length CDS 1 110 bp of Guangxi Bama mini-pig SLC30-A8 gene was cloned successfully. The results of fluor- escent quantitative PCR showed there were the highest expression of SLC30-A8 gene in pancreas of Guangxi Bama mini-pig in 12 months of age, followed by the heart and spleen, and almost no expression in lung, fat and small intestine. The study lays the foundation for further study of the SLC30-A8 gene in effects on glucose metabolism in the process of diabetes.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2016年第8期1935-1938,共4页 Genomics and Applied Biology
基金 广西科技基础条件平台建设项目不同诱导型广西巴马小型猪2型糖尿病动物模型转录组的研究(14-91-07) 国家现代农业产业技术体系广西生猪创新团队项目(nycytxgxcxtd-03-15)共同资助
关键词 广西巴马小型猪 SLC30-A8基因 荧光定量PCR 糖尿病 Guangxi Bama mini-pig, SLC30-A 8, qRT-PCR, Diabetes
  • 相关文献

参考文献4

二级参考文献51

  • 1冯荣芳,冯亚青,吕佩源.阿尔茨海默病动物模型研究进展[J].脑与神经疾病杂志,2008,16(6):724-726. 被引量:17
  • 2李稚锋,王正志,张成岗.真核基因可变剪接研究现状与展望[J].生物信息学,2004,2(2):35-38. 被引量:12
  • 3Besecker B, Bao S, Bohacova B, Papp A, Sadee W and Knoell D L, 2008. The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 294(6): L 1127-1136.
  • 4Devirgiliis C, Zalewski P D, Perozzi G and Murgia C, 2007. Zinc fluxes and zinc transporter genes in chronic diseases. Mutation Research, 622(1-2): 84-93.
  • 5Ellis C D, Wang F, MacDiarmid C W, Clark S, Lyons T and Eide D J, 2004. Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. Journal of Cell Biology, 166(3): 325-335.
  • 6Frederickson C J, Suh S W, Silva D and Thompson R B, 2000. Importance of zinc in the central nervous system: The zinc-containing neuron. Journal of Nutrition, 130 (5S Suppl): 1471S-1483S.
  • 7Hershfinkel M, Silverman W F and Sekler I, 2007. The zinc sensing receptor, a link between zinc and cell signaling. Molecular Medicine, 13(7-8): 331-336.
  • 8Kambe T, 2011. An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Bioscience Biotechnology and Biochemistry, 75 (6): 1036-1043.
  • 9Kambe T and Andrews G K, 2009. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Molecular and Cellular Biology, 29(1): 129-139.
  • 10Kambe T, Geiser J, Lahner B, Salt D E and Andrews G K, 2008. Slc39al to 3 (subfamily II) Zip genes in mice have unique cell-specific functions during adaptation to zinc deficiency. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 294 (5): R1474-1481.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部